.:l" 4 5 l //
] /
05R /
o NS :

Firebird Networks Belgium

Introductions

* Network Consultant and Co-Founder of Firebird Networks

* Points of interest: datacenter networks, service provider architecture,
network automation

It's 2014 on highway 101 from San Francisco to San
Jose, some cars are driving themselves. Around the
world there are military aircraft flying around with no
pilot, being controlled by remotely from another country.
In your data center there is an engineer/admin
configuring a switch on a CLI. What's wrong with this

picture?

Joe Onisick — Principal Engineer Cisco Systems

e s L ol]

Network Agility

enable
Routers configure termin: \Ou # configure
er (config)# enable : C1SCC s (config)$# enabl
:‘:'RI.:.';'# 1T 111 .F ' t .\ ' ' g"_-aa._cLl—-' i '-::' .i;'::'# -—F.
config)# 1

confia

interface
- » -

o B el Y

¥ copt

Terminal Protocol: Telnet Terminal Protocol: SSH

Automation vs. Orchestration

* What is automation?
* Automation eliminates the necessity of repeatable manual tasks
* What is orchestration?

* Orchestration is the manner in which automated tasks are grouped
together in coordinated workflows

“What is Ansible?”

* “Ansible is a super-simple automation platform that is agentless and
extensible”

* By simple it means that you don’t need any coding knowledge to get
started

* Agentless means that you do not require an agent on each device In

order to be able to control them (important for vendor-locked network
devices)

* Extensible means that it benefits from the open-source community and
things will be built for it.

Basic Ansible Architecture

Ansible = automation platform
Can be installed on every laptop or just a central server.
Use pip, apt or yum or pkg to install on *nix-based machines

All automation is performed out of the device that hosts the installation of
Ansible (also known as a control host)

Uses the notion of playbooks - a set of automation tasks and instructions
which are pushed for execution on specific hosts.

Playbooks

From . “Playbooks are Ansible’s configuration, deployment,
and orchestration language. They can describe a policy you want your
remote systems to enforce, or a set of steps in a general IT process.”

Playbooks are similar to an |kea instruction manual that breaks the entire
process of configuring a router, or a BGP process or whatever else into
small little tasks and delegates the interaction witht he devices.

Best feature: human-readable (if you like YAML)

Check more examples out:

http://ansible.com
https://github.com/ansible/ansible-examples

YAML

Ansible Playbooks are expressed using YAML syntax
YAML - YAML Ain’t Markup Language

YAML uses a small amount of separators - indentation gives structure, colons separate
keys, and dashes create bullet lists

Every YAML file must start with - - - and end with . ..
Members of a list are marked with a dash (- Apple)

Dictionary terms are a pair separated by a colon - key: value (yes, the space between the
two is necessary)

More syntax documentation:

http://docs.ansible.com/ansible/latest/YAMLSyntax.html

Templates

Ansible uses the Python-based Jinia2 templating language
A template is a standard configuration without its variables
Internally based on Unicode, it is inspired by Django’s templating system

Jinjia supports a few control structures like if and for-loops making it easy
to shorten your templates

A good starter for understanding Jinia templates:

https://realpython.com/blog/python/primer-on-jinja-templating/

From Configuration to Jinjia
Template

router bgp {{ as _number }}

CRS# conf t !

CRS (config) # router bgp 65501

CRS (config-bgp) # neighbor 10.10.10.2 neighbor {{ ip neighbor }}
CRS (config-bgp-nbr) # remote-as 2000

CRS (config-bgp-nbr) # password <MD5 password> remote-as {{ as_number }}

CRS (config-bgp-nbr) # ebgp-multihop 2

CRS (config-bgp-nbr) # update-source loopback0 password {{ md>_password }}
CRS (config-bgp-nbr)# address-family ipv4 unicast

CRS (config-bgp-nbr-af) # route-policy xxxxx in ebgp-multihop {{ mhop_value }}
CRS (config-bgp-nbr-af) # exit

update-source {{ update if }}

address-family i1ipv4 unicast

vlian 6

name NETAZZA

vn-segment 10006
vlian 7

name Test WAN

vn-segment 10007
vlian 11

name V1anll/104-107

vn-segment 10011
vlian 13

name OBM/112-115

vn—-segment 10013
vlian 21

name eal dev_147-148

vn—-segment 10021
vlian 23

name HP-Heartbeat

vn—-segment 10023
vlian 24

name SAP/156-159

vn-segment 10024
vlian 25

name eal prod 160-163

vn—-segment 10025

Variables and Variable Files

Double curly brackets = variables

bru_leaf.j2

hostname: bru dc _a0001

Variables are not stored in the lans:
templa'tes - { id: 6, name: netazza, vni: 10006 }

id: 7, name: test wan, vni: 10007 }

id: 11, name: servers104 107, vni: 10011 }
id: 13, name: servers112_115, vni: 10013 }
id: 21, name: eai 147 148, vni: 10021 }

Variables are stored In variable files id: 23, name: hp_heartbeat, vni: 10023 }

N N B
N T

Example variable file

Basic Working Ansible Playbook

* Premises: Build the most basic playbook that can check time on 2
devices

auxesis@ubuntu: ~/Documents/Scripts/ansible_polaris

W . pame: nx-os test
hosts: "test-leafs”
gather facts: false
connection: local

* Step 1: Build the “Playbook” file

vars:
cli:
host: "{{ inventory hostname }}"
username:
password:
transport: cli

tasks:
- name: show clock
NnXos_command:
commands: show clock
provider: "{{ cli }}"

register: output

- name: show output
debug:
var: output.stdout

Basic Working Ansible Playbook

* Make sure your
Inventory is up to date

* And then just run the
playbook by typing
ansible-playbook
fille_name.ym|

auxesis@ubuntu: ~/Documents/Scripts/ar

) [test-leafs]
Bi16.1.1.1
gl 10.1.1.2
|
|
auxesis@ubuntu:~/Documents/Scripts/ansible_polaris$ ansible-playbook nxos test.yml

PLAY [nx_os test] R R R A R R R R R R R R R R R R A A A TR R R EEEEEEEEEEEEEEEEEEEEEEREEREREERERERIIERERRR R

TASK [Show ClOCk] R A R R R R R R R R A A R R R AT E AT AT I EEEEEEEEEEEEREEEEEERREEEIEIRRRR R %

TASK [Show output] A A A R R R R R R R A AT AT T T T ETEEEEEEEEEEEEEEEEEEEEERRRRRR %

PLAY RECAP A A R R R R R R R R A A AT R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEEIRRRRRR X%

changed=0 unreachable=0 failed=0
changed=0 unreachable=0 failed=0

Summary of a Simple Ansible Playbook

* Every Ansible Playbook will be written in YAML, has a specific necessity
for beginning with - - - and ending with . . .

* |t needs a method to connect to Its devices which are stored in an
iInventory file

* When templates need to be applied, a template file is used - Jinjia2 is the
preferred templating language

* The values that are introduced for each of the devices for each of the
templates are stored in a variable file which is also a .2 file

Part ll: FreeBSD for Network Engineers

* Setting up a new VM with ansible & python in a matter of minutes

* Executing playbooks and working around known caveats

Getting Ansible on Your FreeBSD
Machine

* Setting up Ansible on FreeBSD means setting up your control machine.
You can do this in a jail, you can have it running as a VM somewhere, or

as a bare-metal machine.

* The obvious requirement is that it needs to be able to access the hosts
that it should “manage” (more a network problem than a server problem)

* Tip: Make sure your username is in the sudoers group (especially if you
provision a new machine)

Preparing your machine

* Have OpenSSH up and running on your machine

S service -e | grep sshd

/etc/rc.d/sshd

* If it’s not running, make sure you add & activate it at boot:
echo 'sshd enable="YES"' >> /etc/rc.conf

service sshd start

* Install ansible & python in one command:

pkg install ansible python

S freebsd-version
11.1-RELEASE

$ service —-e | grep sshd
/etc/rc.d/sshd

3

S
$ python -V
Python 2.7.15

The ansible_python_interpreter caveat

* FreeBSD (OpenBSD too for that matter) doesn’t come with
/usr/bin/python

* The ports don't install a "python" package, actually: they install a version
of python, named after the version

TASK [Gatherlng FaCtS] e b b b b b b e e i b b b i e e e b b b i e e i b b b i i e e i b b b i e e i b b i i e e b b b b e e e b b b i e i i i b i i e i b b i i e e i i i

fatal: [BRA-R8-DC-S0002]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0001]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [CEN-HQA-DC-S0002]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not £

ound\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [CEN-HQA-DC-S0001]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not £
ound\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0002]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0013]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-S0001]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0015]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0014]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}
fatal: [BRA-R8-DC-A0016]: FAILED! => {"changed": false, "module stderr": "/bin/sh: /usr/bin/python: not fo
und\n", "module stdout": "", "msg": "MODULE FAILURE", "rc": 127}

The ansible_python_interpreter caveat

* One solution is to just add it to your hosts files and pass it as a variable.

* This also allows you to use different versions of Python depending on the
scripts that you want to use.

Examples of Playbooks and Network Applications

-Unknown

Questions?

firebird networks firebird networks

firebird networks firebird networks

