
FreeBSD/VPC
Virtual Private Cloud support (fka SDN)



Virtualization Status
• bhyve(4) is a stable, performant hypervisor


• Network isolation is not core to bhyve(4) today


• Use of VNET(9) for manipulating FIBS for tap(4) 
interfaces is possible, but limited and not performant



Problem
• bhyve(4) guests run customer workloads


• Cloud providers need a single FIB for the underlay 
network


• Guests run in isolated overlay networks


• How do you map guests to their respective overlay 
network?



Guest Workloads

em0

Guest 1 
Customer A

Guest 2 
Customer B



Guest Workloads

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

bridge0

tap51 tap52



FreeBSD
• bhyve(4) guests run customer workloads


• Cloud providers need a single FIB for the underlay 
network


• Guests run in isolated overlay networks


• How do you map guests to their respective overlay 
network?



if_bridge(4) Approach

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

tap51

bridge0

tap50 tap52

bridge2bridge1



Problems with Current Tools: 
tap(4)/bridge(4)/vxlan(4)/VNET(9)

• tap(4) is slow


• bridge(4) is slow


• vxlan(4) sends received packets through ip_input() 
twice (i.e. "sub-optimal")


• VNET(9) virtualizes underlay networks, not overlay networks


• How do you ARP across machines?


• How do you perform vxlan(4) encap?



FreeBSD/vpc

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vmnic1

vpclink0

vmnic0 vmnic2

vpcsw1vpcsw0



FreeBSD/vpc Multi-Host

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

???



FreeBSD/vpc Multi-Host

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

VNI 123 VNI 987

VNI 123 VNI 987

VXLAN 
Packets



VXLAN to the Rescue
• Encapsulates all IP packets as UDP


• Adds a preamble to IP packet


• Tags packets and with a VXLAN ID, known as a VNI


• VXLAN is similar to VLAN tagging, but embeds tagging in 
the IP header, not in the L2 frame



FreeBSD/vpc Multi-Host

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

em0

Guest 1 
Customer A

Guest 3 
Customer B

Guest 2 
Customer B

vpclink0

vmnic0

vpcsw1vpcsw0

vmnic1 vmnic2

VNI 123 VNI 987

VNI 123 VNI 987

VXLAN 
Packets



vpc(4) Interfaces
• vpcsw(4) - switches packets - one packet per customer, multiple 

subnets supported in the same switch


• vmnic(4) - dedicated guest NIC, looks like a virtio network device 
to guests


• vpcp(4) - plugs vmnic(4) ports into vpcsw(4) switches


• vpci(4) - Non-bhyve(4) interface, usable in jails(2)


• ethlink(4) - Performs unencapsulated packet forwarding, wraps 
a cloned or physical ethernet interface


• vpclink(4) - Performs VXLAN encapsulation



New System Calls
• vpc_open(2) - Creates a new VPC descriptor


• vpc_ctl(2) - Manipulates VPC descriptors


• Capsicum-like, intended for privilege separation


• Intended for idempotent tooling


• Makes aggressive use of UUIDs as operator handles to 
be compatible with Triton



Ongoing Work
• Firewalling


• Routing


• NAT


• Userland Control Plane (including setup and teardown of 
bhyve(4) guests via something not a shell script)



Code
• Kernel: 

https://github.com/joyent/freebsd/tree/projects/VPC


• Kernel Libraries: 
https://github.com/joyent/freebsd/tree/projects/VPC/
libexec/go/src/go.freebsd.org/sys/vpc


• Userland tooling: 
https://github.com/sean-/vpc

https://github.com/joyent/freebsd/tree/projects/VPC
https://github.com/joyent/freebsd/tree/projects/VPC/libexec/go/src/go.freebsd.org/sys/vpc
https://github.com/joyent/freebsd/tree/projects/VPC/libexec/go/src/go.freebsd.org/sys/vpc
https://github.com/sean-/vpc


Questions?


