
NUMA and VM Scalability

Mark Johnston
markj@FreeBSD.org

FreeBSD Developer Summit
MeetBSD 2018

October 18, 2018

markj@FreeBSD.org


Non-Uniform Memory Access

Motivation

I Scalable multiprocessing

I Target commodity systems

Assumptions

I CPU caches are coherent

I Small number of NUMA domains (usually 2 or 4)

I Low NUMA factor (20-50%)

I NUMA domains are balanced



OS Goals

I Balance resource (memory controller) utilization

I Sane default NUMA allocation policies

I Allow applications to declare intent

I DTRT for static allocations (per-CPU data, DMA, etc.)

I Handle local memory shortages gracefully



OS Support

NUMA awareness:

I CPU scheduler

I cpuset(2)

I busdma(9)

I Memory allocators: UMA, malloc(9), kmem malloc(9),
kstacks, etc.

SMP scalability:

I Page allocator

I Page queues

I Buffer cache



FreeBSD History

I SRAT parser and vm phys domain awareness
I r210550, r210552 (2010)
I First-touch allocation policy, useful with CPU pinning
I Changed to round-robin in r250601 (2013)

I Per-domain page queues
I r254065 (2013)

I projects/numa (2014)
I VM NUMA ALLOC, numactl(8)

I r285387 (2015)
I First attempt at user-configurable policies
I Included a SLIT parser, currently not used by the kernel



NUMA/Scalability project

I 2017/2018, many commits

I Work by Jeff Roberson, sponsored by Limelight, Netflix, Isilon

I Plumb int domain through various layers

I Define NUMA allocation policy abstraction

I Provide userland interface for specifying allocation policy

I Address VM and buffer cache bottlenecks



domainset(9)

I Structure defining a domain selection policy

I Immutable
I Iterator state is defined externally (struct domainset ref)

I Contains a pointer to a domainset
I Embedded in struct thread and vm object t

I vm domainset *() applies a domainset to an iterator

I Can restrict to a subset of system’s domains
I Some predefined policies can be used

I DOMAINSET PREF(1): “Allocate from domain 1 or fall back”
I DOMAINSET RR(): Global round-robin



domainset(9) policies

DOMAINSET POLICY ROUNDROBIN

I Cycles through domains: d = iter++ % ds->ds cnt

I 0, 1, 2, 3, 0, 1, 2, 3, 0, ...

DOMAINSET POLICY FIRSTTOUCH

I Pick the domain of the current CPU: d = PCPU GET(domain)

DOMAINSET POLICY PREFER

I Pick the domain specified in the policy: d = ds->ds prefer

I Fall back to round-robin when free pages are scarce

DOMAINSET POLICY INTERLEAVE

I Domain is a function of the pindex

I Round-robin with a stride, for successive indices

I 0, 0, ..., 0, 1, 1, ..., 1, 0, 0, ...

I Superpage-friendly: use a stride of 512



vm domainset

vm_domainset_iter_page_init(&di, obj, pindex, &domain, &flags);

do {

m = vm_page_alloc_domain(obj, pindex, domain, flags);

if (m != NULL)

break;

} while (vm_domainset_iter_page(&di, obj, &domain) == 0);

return (m);



Userland interface

I Domain selection policies integrated into cpuset(1)

I Each cpuset has an associated struct domainset

I Allows specification of a policy for a thread, process, jail
I cpuset -n rr:0,2 make buildworld
I cpuset -g -s 0

I cpuset getdomain(2), cpuset setdomain(2)

I Userland threads default to first-touch
I Domain selection overridden to preserve superpage reservations



Memory allocators (1)

UMA, malloc(9)

I No policy at the caching layer (fast path)

I Default round-robin policy at the slab layer (zone iterator)

I UMA zone policy: UMA ZONE NUMA for first-touch

I uma zalloc domain(2), malloc domain(2)

kmem malloc(9) and friends

I Round-robin policy (thread iterator)

I Multiple vmem(9) arenas provide striping for superpages

busdma(9)

I Bus can be queried for domain affinity ( PXM method)

I DMA tags cache local domain index

I DMA allocations use malloc domain(9) with local domain



Memory allocators (2)

vm page alloc() and friends

I Source of user memory allocations (page faults, etc.)

I Not always under user control (e.g., libc.so)

I Policy specified by VM object (may be absent), or thread

I vm page alloc domain()

Kernel stacks

I Global round-robin policy (thread iterator)

I Kernel stacks are cached

I We can do better (e.g., ithread kstacks)



Low memory handling

I Each domain has page queues, page daemon, laundry thread
I Page domains are mostly independent

I Per-domain free page targets, laundry targets
I OOM kills occur only when all domains are depleted
I Does not work well if most of a domain is wired (e.g., by ARC)

I vm wait doms(): sleep until one of the specified domains has
some free pages



Scalability improvements

I PID controller for free page target

I Split free page mutex and add per-CPU free page cache

I Fine-grained reservation locking

I Lockless page daemon wakeups and v free count updates

I Per-CPU v wire count accounting

I Page queue batching

I Lazy dequeue of wired pages

I Buffer cache sharding, locking improvements



Future Work

NUMA:

I Non-x86 support (arm64 and powerpc64)

I Statistics collection

I libnuma, msetdomain(2)

I Static allocations (pcpu(9), kernel thread stacks, etc.)

I More affinity plumbing (per-mountpoint policy?)

I ZFS integration

I taskqueue(9) integration

Scalability:

I Split user (mlock(2)) and kernel wired page accounting

I Lockless per-page queue state

I Lockless vm page hold()

I Improve PQ ACTIVE scalability in the page fault handler


