How ZFS Snapshots
Really Work

Matt Ahrens
BSDCAN 2019

D=-LPHIX

What are snapshots?

Store an old “copy” of the data
“Oops” recovery

Malware recovery

Replication with zfs send/receive

How to use snapshots

zfs snapshot pool/fs@snap

zfs snapshot -r pool@snap

zfs destroy pool/fs@snap

zfs send -i @oldsnap pool/fs@newsnap | \
ssh .. zfs receive ..

zfs get .. pool/fs@snap

How to use snapshots

1. Take a snapshot of every filesystem every hour

(8700 snapshots per filesystem per year)

2. ...
3. Wonder where all your space went [° ®

By

~
0

How do snhapshots work?

Copy-On-Write Transaction Groups (TXG’s)

1. Initial block tree 2. COW some blocks

3. COW indirect blocks 4. Rewrite uberblock (atomic)

—> [e

ZFS Snapshots ot

/ 1\
® How to create snapshot? A4 /K

o Save the root block - L

e \When block is removed, can we free it?

o Use BP’s birth time E22Rtmel U 37
. snap time 25
o If birth > prevsnap =

. live time 37 3719
m Freeit %g
37|25 19(15

[4/'. e U v \

e \When delete snapshot, what to free?
o Find unique blocks - Tricky!

Trickiness will be worth it!

Per-Snapshot Bitmaps

Block allocation bitmap for every snapshot
O(N) per-snapshot space overhead

Limits number of snapshots

O(N) create, O(N) delete, O(N) incremental
Snapshot bitmap comparison is O(N)

Generates unstructured block delta

Requires some prior snapshot to exist

Snapshot 1 [[| I
Snapshot2 I I W

| |
Snapshot 3 I T W T | I
LiveFs I] I
summary [T TN | [|
Block number —>

ZFS Birth Times

Each block pointer contains child's birth time

O(1) per-snapshot space overhead
Unlimited snapshots

O(1) create, O(A) delete, O(A) incremental
Birth-time-pruned tree walk is O(A)

Generates semantically rich object delta

Can generate delta since any point in time

| snap time 19 |
| snap time 25 | 37
| live time 37 |
37119
37125] 15

C

Snapshot Deletion

® Free unique blocks (ref’d only by this snap)
e Optimal algo: O(# blocks to free)

o And # blocks to read from disk << # blocks to free

e Block lifetimes are contiguous

o AKA “there is no afterlife”
o Unique = not ref'd by prev or next (ignore
others)

Snapshot Deletion (5=)

® Traverse tree of blocks

® Birth time <= prev snap?
o Ref’d by prev snap; do not free.
o Do not examine children; they are also <= prev

Older snap #19
] 37

Prev snap #25 i

II' |

Deleting snap #37 :
SRl s 37[19

\}
3725 /19 15\

| \i\\

Snapshot Deletion (5=)

® Traverse tree of blocks

® Birth time <= prev snap?
o Ref’d by prev snap; do not free.
o Do not examine children; they are also <= prev

e Find BP of same file/offset in next snap
o |If same, ref’d by next snap; do not free.

® O(# blocks written since prev snap)

e How many blocks to read?
o Could be 2x # blocks written since prev snap

Snapshot Deletion (5=)

® Read Up to 2x # blocks written since prev snap
e Maybe you read a million blocks and free nothing

o (next snap is identical to this one)

e Maybe you have to read 2 blocks to free one
o (only one block modified under each indirect)

e RANDOM READS!

o 200 IOPS, 8K block size -> free 0.8 MB/s
o Can write at ~200MB/s

2 ¢ D 8

FIGURE 131. Hourglass

Snapshot Deletion ()

e Keep track of no-longer-referenced (“dead”) blocks
e Each dataset (snapshot & filesystem) has “dead list”
o On-disk array of block pointers (BP’s)
o blocks ref'd by prev snap, not ref’d by me

= o= _I Blocks on Snap 2’s deadlist

Blocks on Snap 3’s deadlist

" = o= o= om _IBIocks on FS’s deac

..... O ® -
Snap 1 Snap 2 Snap 3 Filesystem

-> Snapshot Timeline ->

Snapshot Deletion ()

® Traverse next snap’s deadlist
® Free blocks with birth > prev snap

Prev Snap Target Snap Next Shap

Snapshot Deletion ()

® O(size of next’s deadlist)

o = O(# blocks deleted before next snap)
o Similar to (# deleted ~= # created)

® Deadlist is compact!

o 1 read = process 1024 BP’s
o Up to 2048x faster than Algo 1!

e Could still take a long time to free nothing

2 ¢ D 8

FIGURE 131. Hourglass

® Divide deadlist into sub-lists based on birth time

® One sub-list per earlier snapshot
o Delete snapshot: merge FS’s sublists

fr— O < S1
f—— 0T (S1, 52
| b0 (S2, 3]
I—I born (S3, S4]

O O O
Snap 1 Deleted Snap 3 Snap 4 Snap 5

snap

AT s S A TSR N
el e IR (N
('/_/‘:._'::'/ LTINS
‘_:-, S5

Snapshot Deletion (

® [terate over sublists
e |f mintxg > prev, free all BP’s in sublist
e Merge target’s deadlist into next’s

o Append sublist by reference -> O(1)

| { Born <S1: merge to A
| | Born (S1, S2]: merge to B
/ /: | Born (S2, S3]: merge to C
A: Keep

: \: K i B: Kee
\: | C Keeg
I)e Free
O O
Snap 1 Deleted Snap 3 Snap 4 Snap 5

snap

Snapshot Deletion (=t
e Deletion: O(# sublists + # blocks to free)
o 200 IOPS, 8K block size -> free 1500MB/sec

e Optimal: O(# blocks to free)

e # sublists = # snapshots present when snap created
® # sublists << # blocks to free

- Where did all
the space go?.

How much space are the snapshots using?

$ zfs list

NAME USED AVAIL REFER MOUNTPOINT
rpool 1000G 100G 50K /rpool
rpool/fs 1000G 100G 700G /rpool/fs

$ zfs get usedbysnapshots pool/fs
300G

How much space would be recovered if all of this fs's snapshots were destroyed.

|.e. How much storage am | paying for all these snapshots?

How much space are the snapshots using?

S zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT
rpool 1000G 100G 50K /rpool
rpool/fs 1000G 100G 700G /rpool/fs
rpool/fs@snapl 1G - 699G -
rpool/fs@snap?2 2G - 699G -
rpool/fs@snap3 1G - 700G -
rpool/fs@snapi4 3G - 700G -

S zfs get usedby snapshots pool/fs
300G

How much space would be recovered if each snapshot was destroyed?

1+424+1+3 = 7G # 300G
What about the other 293GB?

N1

Snhapshots’ “used”
IS “unique’

I 93GB I

Shared 100GB 50GB
(2936G) I 50GB I
NOt ”usedby Snapshots” I ®E E E E E E = é
(700G)
: 1GB 2GB 1GB 3GB
Unique }-—-SL--{ }-—-éi--i P—-—.—...*
(7G)
O O O
Snapl Snap2 Snap3 Snap4

>»———— Snapshot Timeline »—»———

How much space is being used?

S zfs list -t all -o name,written,used,refer rpool/fs

NAME WRITTEN USED REFER
rpool/fs 0 1000G 700G
rpool/fs@snapl 894G 1G 699G
rpool/fs@snap? 52G 2G 699G
rpool/fs@snap3 51G 1G 700G
rpool/fs@snap4 3G 3G 700G

S zfs get usedby snapshots pool/fs
300G

Sumof written = FS’s used

0 + 894 + 52 + 51 + 3 = 1000G

FS's referenced + used by snapshots = used

700 + 300 = 1000G

I 93GB I

Shared 100GB 50GB
(2936G) I 50GB I
NOt ”usedby Snapshots” I ®E E E E E E = é
(700G)
: 1GB 2GB 1GB 3GB
Unique }-—-SL--{ }-—-éi--i P—-—.—...*
(7G)
O O O
Snapl Snap2 Snap3 Snap4

>»———— Snapshot Timeline »—»———

Snapl’'swritten

I_ 93GB I
Shared F% SOGB

(293G)

Snapd'swritten

NOt ”'J_Séid by Snap'ShIOtS” 1 sl B = ®E ® = M
(7006G) FS'swrit
Uni 1GB ! 2GB I ! 1GB I 3GB
nique w
(7G)
9 O 9
Snapl Snap2 Snap3 Snap4

>»———— Snapshot Timeline »—»———

Snap3’'swritten@snapl = 50+50+1 = 101GB

93GB

(293G) [oG

NOt ”usedby Snapshots” 1 sl = = = m = é

(700G)
Uni 1GB I 2GB I I 1GB I 3GB
(7G) -
O O O
Snapl Snap2 Snap3 Snap4

>»———— Snapshot Timeline »—»———

How does written@old work?

”

Can’t quickly find “blocks born in this txg range that exist in this snapshot
o Deadlists store blocks that were killed
o We are interested in some blocks that are still alive
New’'s refer - old’s refer + space freed in between
Deadlists tell us what was freed
Written
o Examine one sublist
o O(1)
written@...
o Examine all snapshots in between
m Examine their sublists for births < old
o O(num_snaps_between old _and new * num_snaps_before_old)

How to understand shared snapshot space?

e What if we delete some of the snapshots?
o zfs destroy -nv pool/fs@begin$%$end
0 zfs destroy -nv pool/fs@a,b,j,k,z
e How to use
o (Categorize snap space into different
(application-defined) classes
o E.g. space for periodic snapshots vs user-requested
snaps (but some space will be shared between
classes too)

How to implement shared snapshot space?

e (Corner cases:
o One snapshot: same as used and unique properties
o All snapshots: same as used by snapshots property
e General case:
o Blocks born after begin->prev, died before end->next
o Deadlist breakdown

What if we delete Begin...End (5 snhaps)?

—— - ——

o—o—0 9 O O *—0—0©
Begin Snap2 Snap3 Snap4 End Snap6

I |:I Deadlists w/sublists!

—

o—o—0 9 O O *—0—0©
Begin Snap2 Snap3 Snap4 End Snap6

I |:I O(n?) Deadlists w/sublists!

—

o—o—0 9 O O *—0—0©
Begin Snap2 Snap3 Snap4 End Snap6

10,000

Fear O(n?)

$000——————

2

Fear O(nz)

e About those 8700 snaps per year (per fs)..
e /5 Million lists!
o Imagine each one is 1 sector (4K)
o 288GB on disk (per fs)
¢ zfs destroy -nv pool/fs@snapl0%snap8690
o Read them all (at 10,000 iops) in 2 hours
o While holding locks that prevent TXG sync

Fear O(n®)?

Nearly all lists are empty

e Don't store them on disk (empty bpobj feature, 2012)
o 60 seconds (when ARC-cached)

e Partial deadlist load (ignore empty bpobj’s)
o S5x speed up — 12 sec
o Review out

e (Cache (partial) deadlist
o Additional 70x speed up (350x from base) — 0.2 sec
o Prototyped

e Still O(n?)!

https://github.com/zfsonlinux/zfs/pull/8744

Confused by snapshot space usage?
You're not alone :-)

1. Look at used by snapshots first

2. lgnore snapshots’ used (it's really unique)

3. written can help understand space growth

4. “What if” with zfs destroy -nv pool/fs@<snaps>

/th annual OZDS!
November 4-5, 2019
Talk proposals due Aug 19
Sponsorship opportunities

NN
- —

OpenZFS

DEVELOPER mmm
- I
P —

#OpenZFS

|\ J
#8 OpenZFS DEV SUMMIT
DEV SUMMIT 2017 2018

