
How ZFS Snapshots
Really Work

Matt Ahrens
BSDCAN 2019



What are snapshots?
● Store an old “copy” of the data
● “Oops” recovery
● Malware recovery
● Replication with zfs send/receive



How to use snapshots
zfs snapshot pool/fs@snap
zfs snapshot -r pool@snap
zfs destroy pool/fs@snap
zfs send -i @oldsnap pool/fs@newsnap | \
    ssh … zfs receive …
zfs get … pool/fs@snap



How to use snapshots
1. Take a snapshot of every filesystem every hour

(8700 snapshots per filesystem per year)

2. …
3. Wonder where all your space went



How do snapshots work?



Copy-On-Write Transaction Groups (TXG’s)
1. Initial block tree 2. COW some blocks

4. Rewrite uberblock (atomic)3. COW indirect blocks



ZFS Snapshots
● How to create snapshot?

○ Save the root block

● When block is removed, can we free it?
○ Use BP’s birth time

○ If birth > prevsnap

■ Free it
19 1519 19

19 19

19

25 25

25 19

25

37 25

37 19

37
snap time 25

snap time 19

live time 37

● When delete snapshot, what to free?
○ Find unique blocks - Tricky!



Trickiness will be worth it!
Per-Snapshot Bitmaps

● Block allocation bitmap for every snapshot
● O(N) per-snapshot space overhead
● Limits number of snapshots

● O(N) create, O(N) delete, O(N) incremental
● Snapshot bitmap comparison is O(N)
● Generates unstructured block delta
● Requires some prior snapshot to exist

ZFS Birth Times
● Each block pointer contains child's birth time

● O(1) per-snapshot space overhead
● Unlimited snapshots

● O(1) create, O(Δ) delete, O(Δ) incremental
● Birth-time-pruned tree walk is O(Δ)
● Generates semantically rich object delta
● Can generate delta since any point in time

Block number
Summary
Live FS

Snapshot 3
Snapshot 2
Snapshot 1

19 1519 19

19 19

19

25 25

25 19

25

37 25

37 19

37snap time 25
snap time 19

live time 37



Snapshot Deletion
● Free unique blocks (ref’d only by this snap)

● Optimal algo: O(# blocks to free)
○ And # blocks to read from disk << # blocks to free

● Block lifetimes are contiguous
○ AKA “there is no afterlife”

○ Unique = not ref’d by prev or next (ignore 

others)



Snapshot Deletion (        )
● Traverse tree of blocks

● Birth time <= prev snap?
○ Ref’d by prev snap; do not free.

○ Do not examine children; they are also <= prev

19 1519 19

19 19

19

25 25

25 19

25

37 25

37 19

37
Prev snap #25

Older snap #19

Deleting snap #37



● Traverse tree of blocks

● Birth time <= prev snap?
○ Ref’d by prev snap; do not free.

○ Do not examine children; they are also <= prev

● Find BP of same file/offset in next snap
○ If same, ref’d by next snap; do not free.

● O(# blocks written since prev snap)

● How many blocks to read?
○ Could be 2x # blocks written since prev snap

Snapshot Deletion (        )



● Read Up to 2x # blocks written since prev snap

● Maybe you read a million blocks and free nothing
○ (next snap is identical to this one)

● Maybe you have to read 2 blocks to free one
○ (only one block modified under each indirect)

● RANDOM READS!
○ 200 IOPS, 8K block size -> free 0.8 MB/s

○ Can write at ~200MB/s

Snapshot Deletion (        )



Snapshot Deletion (       )
● Keep track of no-longer-referenced (“dead”) blocks

● Each dataset (snapshot & filesystem) has “dead list”

○ On-disk array of block pointers (BP’s)

○ blocks ref’d by prev snap, not ref’d by me

Snap 1 Snap 2 Snap 3 Filesystem

Blocks on Snap 2’s deadlist

Blocks on Snap 3’s deadlist

Blocks on FS’s deadlist

-> Snapshot Timeline ->



● Traverse next snap’s deadlist

● Free blocks with birth > prev snap

Prev Snap Target Snap Next Snap

Target’s DL: Merge to Next

Next’s DL: Free

Next’s DL: Keep

Snapshot Deletion (       )



● O(size of next’s deadlist)
○ = O(# blocks deleted before next snap)

○ Similar to            (# deleted ~= # created)

● Deadlist is compact!
○ 1 read = process 1024 BP’s

○ Up to 2048x faster than Algo 1!

● Could still take a long time to free nothing

Snapshot Deletion (       )



Snapshot Deletion (             )
● Divide deadlist into sub-lists based on birth time

● One sub-list per earlier snapshot

○ Delete snapshot: merge FS’s sublists

Snap 1 Snap 3 Snap 4 Snap 5

born < S1

born (S1, S2]

born (S3, S4]

born (S2, S3]

Deleted 
snap



● Iterate over sublists

● If mintxg > prev, free all BP’s in sublist

● Merge target’s deadlist into next’s

○ Append sublist by reference -> O(1)

Snap 1 Snap 3 Snap 4 Snap 5

A: Keep

B: Keep

Free

C: Keep

Deleted 
snap

Born <S1: merge to A

Born (S2, S3]: merge to C

Born (S1, S2]: merge to B

Snapshot Deletion (             )



● Deletion: O(# sublists + # blocks to free)

○ 200 IOPS, 8K block size -> free 1500MB/sec

● Optimal: O(# blocks to free)

● # sublists = # snapshots present when snap created

● # sublists << # blocks to free

Snapshot Deletion (             )



Where did all
the space go?



How much space are the snapshots using?
$ zfs list
NAME                USED  AVAIL  REFER  MOUNTPOINT
rpool               1000G  100G    50K  /rpool
rpool/fs            1000G  100G   700G  /rpool/fs

$ zfs get usedbysnapshots pool/fs
300G

How much space would be recovered if all of this fs’s snapshots were destroyed.

I.e. How much storage am I paying for all these snapshots?



How much space are the snapshots using?
$ zfs list -t all
NAME                USED  AVAIL  REFER  MOUNTPOINT
rpool               1000G  100G    50K  /rpool
rpool/fs            1000G  100G   700G  /rpool/fs
rpool/fs@snap1         1G     -   699G  -
rpool/fs@snap2         2G     -   699G  -
rpool/fs@snap3         1G     -   700G  -
rpool/fs@snap4         3G     -   700G  -

$ zfs get used by snapshots pool/fs
300G

How much space would be recovered if each snapshot was destroyed?

1+2+1+3 = 7G ≠ 300G
What about the other 293GB?



Snapshots’ “used” 
is “unique”



Snap4Snap1 Snap2 Snap3

→→→→→ Snapshot Timeline →→→→→

Unique
(7G)

1GB 2GB 1GB 3GB

FS

Not “used by snapshots”
(700G)

100GBShared
 (293G)

50GB

50GB

93GB



How much space is being used?
$ zfs list -t all -o name,written,used,refer rpool/fs
NAME                WRITTEN   USED   REFER
rpool/fs                  0  1000G    700G
rpool/fs@snap1         894G     1G    699G  
rpool/fs@snap2          52G     2G    699G  
rpool/fs@snap3          51G     1G    700G  
rpool/fs@snap4           3G     3G    700G  

$ zfs get used by snapshots pool/fs
300G

Sum of written = FS’s used

0 + 894 + 52 + 51 + 3 = 1000G
FS’s referenced + used by snapshots = used

700 + 300 = 1000G



Snap4Snap1 Snap2 Snap3

→→→→→ Snapshot Timeline →→→→→

Unique
(7G)

1GB 2GB 1GB 3GB

FS

Not “used by snapshots”
(700G)

100GBShared
 (293G)

50GB

50GB

93GB



Snap4Snap1 Snap2 Snap3

→→→→→ Snapshot Timeline →→→→→

Unique
(7G)

1GB 2GB 1GB 3GB

FS

Not “used by snapshots”
(700G)

100GBShared
 (293G)

50GB

50GB

93GB

Snap1’s written

Snap4’s written

FS’s written



Snap4Snap1 Snap2 Snap3

→→→→→ Snapshot Timeline →→→→→

Unique
(7G)

1GB 2GB 1GB 3GB

FS

Not “used by snapshots”
(700G)

100GBShared
 (293G)

50GB

50GB

93GB

Snap3’s written@snap1 = 50+50+1 = 101GB



How does written@old work?
● Can’t quickly find “blocks born in this txg range that exist in this snapshot”

○ Deadlists store blocks that were killed
○ We are interested in some blocks that are still alive

● New’s refer - old’s refer + space freed in between
● Deadlists tell us what was freed
● Written

○ Examine one sublist
○ O(1)

● written@...
○ Examine all snapshots in between

■ Examine their sublists for births < old
○ O(num_snaps_between_old_and_new * num_snaps_before_old)



How to understand shared snapshot space?

● What if we delete some of the snapshots?
○ zfs destroy -nv pool/fs@begin%end
○ zfs destroy -nv pool/fs@a,b,j,k,z

● How to use
○ Categorize snap space into different 

(application-defined) classes
○ E.g. space for periodic snapshots vs user-requested 

snaps (but some space will be shared between 
classes too)



How to implement shared snapshot space?

● Corner cases:
○ One snapshot: same as used and unique properties
○ All snapshots: same as used by snapshots property

● General case:
○ Blocks born after begin->prev, died before end->next 
○ Deadlist breakdown



Snap4Begin Snap2 Snap3 End Snap6

What if we delete Begin...End (5 snaps)?



Snap4Begin Snap2 Snap3 End Snap6

Deadlists w/sublists!



Snap4Begin Snap2 Snap3 End Snap6

O(n2) Deadlists w/sublists!



Fear O(n2)
n2

n log(n)
n

100

10,000



● About those 8700 snaps per year (per fs)...
● 75 Million lists!

○ Imagine each one is 1 sector (4K)
○ 288GB on disk (per fs)

● zfs destroy -nv pool/fs@snap10%snap8690
○ Read them all (at 10,000 iops) in 2 hours
○ While holding locks that prevent TXG sync

Fear O(n2)



Nearly all lists are empty

● Don’t store them on disk (empty_bpobj feature, 2012)
○ 60 seconds (when ARC-cached)

● Partial deadlist load (ignore empty bpobj’s)
○ 5x speed up → 12 sec
○ Review out

● Cache (partial) deadlist
○ Additional 70x speed up (350x from base) → 0.2 sec
○ Prototyped

● Still O(n2)!

Fear O(n2)?

https://github.com/zfsonlinux/zfs/pull/8744


1. Look at used by snapshots first
2. Ignore snapshots’ used (it’s really unique)
3. written can help understand space growth
4. “What if” with zfs destroy -nv pool/fs@<snaps>

Confused by snapshot space usage?
You’re not alone :-)



7th annual OZDS!
November 4-5, 2019

Talk proposals due Aug 19
Sponsorship opportunities


