
The ZFS filesystem
COSCUP 2019

Philip Paeps — Trouble 麻煩
18 August 2019
Taipei, Taiwan

FreeBSD is an open source Unix-like operating system descended from
patches developed at the University of California, Berkeley in the
1970s.

The FreeBSD Project is an active open source community since 1993
with hundreds of committers and thousands of contributors around the
world.

The FreeBSD Foundation is a non-profit organisation registered in
Colorado, USA in 2001 dedicated to supporting the FreeBSD Project, its
development and its community.

What is FreeBSD?

Who uses FreeBSD?

Community
• Friendly and professional
• Many active contributors and

committers for 10+ and even 20+
years (and longer)

Mentoring
• Built into the Project’s culture and

processes

Documentation
• FreeBSD Handbook, FAQ,

Developers’ Handbook, Porters’
Handbook, Unix manual pages

Licence
• 2-clause BSD licence
• Does not restrict what you can do

with your own code!

Where FreeBSD excels

• 2001: Development started at Sun (now Oracle)
• 2005: ZFS source code released
• 2008: ZFS released in FreeBSD 7.0
• (2019: ZFS still doesn’t work reliably on Linux)

History of ZFS

End-to-end data integrity
• Detects and corrects silent data

corruption

Pooled storage
• The first 128 bit filesystem
• Eliminates the antique notion of

volumes

Transactional design
• Data always consistent
• Huge performance wins

Simple administration
• Two commands to manage entire

storage configuration

ZFS in a nutshell

• Disks
• Controllers
• Cables
• Firmware
• Device drivers
• Non-ECC memory

End-to-end data integrity

• Checksums are stored with the
data blocks
• Any self-consistent block will

have a correct checksum
• Can’t even detect stray writes
• Inherently limited to single

filesystems or volumes
üBit rot
✘Phantom writes
✘Misdirected reads and writes
✘DMA parity errors
✘Driver bugs
✘Accidental overwrite

Disk block checksums

Data

Checksum

Data

Checksum

Data

Checksum

Disk block checksums only
validate media

• Checksums are stored in parent
block pointers
• Fault isolation between data and

checksum
• Entire storage pool is a self-

validating Merkle tree üBit rot
üPhantom writes
üMisdirected reads and writes
üDMA parity errors
üDriver bugs
üAccidental overwrite

ZFS data authentication

Address Address

Checksum Checksum

Address Address

Checksum Checksum

Data Data

ZFS data authentication
validates entire I/O path

• Single partition or volume per
filesystem
• Each filesystem has limited I/O

bandwidth
• Filesystems must be manually

resized
• Storage is fragmented

Traditional storage architecture

• No partitions required
• Storage pool grows automatically
• All I/O bandwidth is always

available
• All storage in the pool is shared

ZFS pooled storage

4. Rewrite uberblock (atomic)3. COW indirect blocks

2. COW some blocks1. Ini>al consistent state

Copy-on-write transactions

Only two commands:
1. Storage pools: zpool
• Add and replace disks
• Resize pools

2. Filesystems: zfs
• Quotas, reservations, etc.
• Compression and deduplication
• Snapshots and clones
• atime, readonly, etc.

Simple administration

Self-healing data

Demo

Traditional mirroring

Self-healing data in ZFS

• We have created a
redundant pool with two
mirrored disks and stored
some important data on it

• We will be very sad if the
data gets lost! :-(

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 74K 984G 23K /tank

cp -a /some/important/data/ /tank/

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 3.23G 981G 3.23G /tank

Self-healing data demo
Store some important data (1/2)

Self-healing data demo
Store some important data (2/2)

zpool status tank
pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 3.51G 1012G - - 0% 0% 1.00x ONLINE -

Caution!

This example can destroy
data when used on the wrong
device or a non-ZFS
filesystem!

Always check your backups!

zpool export tank

dd if=/dev/random of=/dev/md1 bs=1m count=200

zpool import tank

Self-healing data demo
Destroy one of the disks (1/2)

Self-healing data demo
Destroy one of the disks (2/2)

zpool status tank
pool: tank

state: ONLINE
status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-9P

scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 5
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (1/3)

zpool scrub tank
zpool status tank

pool: tank
state: ONLINE

status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace'.

see: http://illumos.org/msg/ZFS-8000-9P
scan: scrub in progress since Fri Oct 12 22:57:36 2018

191M scanned out of 3.51G at 23.9M/s, 0h2m to go
186M repaired, 5.32% done

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 1.49K (repairing)
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (2/3)

zpool status tank
pool: tank

state: ONLINE
status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-9P

scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 1.54K
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (3/3)

zpool clear tank

zpool status tank
pool: tank

state: ONLINE
scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
But what if it goes very wrong? (1/2)

zpool status
pool: tank

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub in progress since Fri Oct 12 22:46:01 2018
498M scanned out of 3.51G at 99.6M/s, 0h0m to go
19K repaired, 13.87% done

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 1.48K

mirror-0 ONLINE 0 0 2.97K
md0 ONLINE 0 0 2.97K
md1 ONLINE 0 0 2.97K

errors: 1515 data errors, use '-v' for a list

Self-healing data demo
But what if it goes very wrong? (2/2)

zpool status –v
pool: tank

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub repaired 19K in 0h0m with 1568 errors on Fri Oct 12 22:46:25 2018
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 1.53K

mirror-0 ONLINE 0 0 3.07K
md0 ONLINE 0 0 3.07K
md1 ONLINE 0 0 3.07K

errors: Permanent errors have been detected in the following files:
/tank/FreeBSD-11.2-RELEASE-amd64.vhd.xz
/tank/base-amd64.txz
/tank/FreeBSD-11.2-RELEASE-amd64-disc1.iso.xz
/tank/intro_slides.pdf

● ZFS was originally developed at Sun Microsystems starting
in 2001, and open sourced under the CDDL license in 2005

● Oracle bought Sun in 2010, and close sourced further work
● illumos, a fork of the last open source version of Solaris

became the new upstream for work on ZFS
● ZFS was ported to many platforms, including FreeBSD in

2007 and Linux in 2008. The OpenZFS project was founded
to coordinate development across platforms.

The Evolution of ZFS

● The original plan for OpenZFS was a single common repository
where the OS independent code would live and be tested

● Each OS would sync with this repo and add their own glue
● However, the effort required to maintain a repo that would not be

directly used by any of the consumers was not viable
● The “repo of record” became a fork of illumos
● FreeBSD tracked very closely
● Linux spent a great deal of effort getting caught up

OpenZFS

● OpenZFS is now available on almost every platform
○ illumos (OmniOS, OpenIndiana, SmartOS, DilOS, Tribblix)
○ FreeBSD (FreeNAS, XigmaNAS, TrueOS, pfSense, etc)
○ Linux (ZFS-on-Linux, Ubuntu, Gentoo, OviOS)
○ Mac OS X (ZFS-on-OSX, GreenBytes/ZEVO, Akitio, MacZFS)
○ Windows (https://openzfsonwindows.org/)
○ NetBSD

Platforms

• OpenZFS is now available on almost every platform
• Illumos (OmniOS, OpenIndiana, SmartOS, DilOS, Tribblix)
• FreeBSD (FreeNAS, XigmaOS, TrueOS, pfSense, and more)
• macOS (ZFS-on-OSX, GreenBytes/ZEVO, Akitio, MacZFS)
• Windows (ZFS on Windows)
• NetBSD

• And even Linux

Platforms

● Each different platform’s version of ZFS started to diverge
● OpenZFS replaced the old “pool version number” with “Feature

Flags”, since features would land in different orders
● Bugs were fixed in one repo and not necessarily upstreamed or

communicated to other platform’s could apply the same fix
● Each camp did their development within their own community, and

other communities might not be aware of duplicate efforts, etc.

Divergence

● Greg Kroah-Hartman followed up on the mailing list with:
○ "Sorry, no, we do not keep symbols exported for no in-kernel users."
○ "my tolerance for ZFS is pretty non-existant."

● Longtime Linux kernel developer Christoph Hellwig also suggested users switch
to FreeBSD instead if they care about ZFS.

And Linux?

● The new OpenZFS project organized a conference in November
2013 to have developers from the various platforms share their work
and future ideas and find solutions

● Included a platform panel (FreeBSD, Illumos, MacOS, Linux) and
vendor lightning talks

● Attended by over 30 developers, since grown to over 100
● Now includes a hackathon to work on prototypes while experts are

in the room for advice / design discussions

OpenZFS developer summit

● At the OpenZFS Developer Summit 2018 a discussion between the
various platform leaders lead to the formation of a monthly video
conference to discuss ongoing issues

● Meeting once a month instead of once a year provides more
information exchange and faster response times

● Goal is to keep the platforms better in-sync and compatible
● Open to anyone. Live streamed and recorded to YouTube

Leadership meeting

● The leadership meetings have been very successful
● OpenZFS is working to standardize the command line interface

where it has diverged across platforms
● New features are discussed during the design phase and platform

specific issues are resolved early, with better results
● More effort into effective naming of tunables (ashift is an internal

implementation detail, the user tunable should be called sectorsize
and be expressed in bytes)

Outcomes

● The OpenZFS community is very active and very welcoming
● Watch some of the past “OpenZFS Leadership Meeting” conference

calls on youtube to see for yourself
● The “repo of record” is transitioning to the OpenZFS (formerly “ZFS

on Linux”) repo as it has the most active development and the most
code that still needs to be pulled into other platforms

● Github Issues and Pull requests
● Mailing Lists (Topic Box) for discussions

Get involved!

• ZFS: The last word in filesystems
Jeff Bonwick and Bill Moore
URL:
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf

• Introduction to the ZFS filesystem
Benedict Reuschling
URL: [offline]

Credits

https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf

