
ZFS Powered
Magic Upgrades
Using boot environments for

atomic in-place upgrades



Summary & Introductions

Allan Jude
FreeBSD Core Team
OpenZFS Developer

Klara Inc.
FreeBSD Professional 
Services and Support



Covered in this presentation

What is a boot 
environment?
How do they 

work?

Creating and 
managing boot 
environments

Deploying boot 
environments 

remotely

Doing it even 
better next 

time



What we had before: NanoBSD
● Divides the disk into 2 partitions (firmware images)
● Install the stock image to both
● At upgrade time, overwrite the inactive image
● Boot-once to the newer image. If it fails, or is otherwise 

unserviceable, reboot to good image
● If the new image is accepted, configure it as the new default
● Repeat process for next upgrade



ZFS Boot Environments
● ZFS takes this concept further, allows more flexibility
● You can have many filesystems, no need to partition your disk
● Separate the OS (root FS) from user data (home dirs, logs, 

etc) 
● ZFS has instantaneous snapshots and clones
● Snapshot and clone the root filesystem before you make 

changes or upgrade
● Keep every “working” system image you have ever had



How does it work?
● Now you have multiple different ‘versions’ of your root 

filesystem to choose from, or revert back to
● Modern FreeBSD boot loader allows you to choose from the 

different root filesystems at boot with a nice menu
● Now you can ‘revert’ an upgrade without losing changes to 

home directories, logs, databases or other filesystems, 
further separating the ‘OS’ from the ‘Data’



Regaining Control
● The flexibility of ZFS puts you in control
● Any files in the filesystem mounted as / are treated as part of 

the operating system, kept separate from ‘data’
● Any files in other filesystems, are retained, no matter what 

‘version’ of the OS you choose to boot from
● Packages (/usr/local) and the pkg database (/var/db/pkg) are 

included in /. This allows you to ‘undo’ a pkg upgrade too



NAME                USED  REFER  MOUNTPOINT
zroot              19.5G   88K  /zroot
zroot/ROOT         1.67G   88K  none
zroot/ROOT/default 1.67G 1.67G  /
zroot/tmp              88K   88K  /tmp
zroot/usr          12.3G   88K  /usr
zroot/usr/obj  12.3G 8.03G  /usr/obj
zroot/usr/home       140M  140M  /usr/home
zroot/var             153M   88K  /var
zroot/var/audit        88K   88K  /var/audit
zroot/var/crash      152M  152M  /var/crash
zroot/var/log        352K  352K  /var/log
zroot/var/mail       132K  132K  /var/mail
zroot/var/tmp          88K   88K  /var/tmp



Going Further
● When upgrading a system, we wanted to replace the entire 

OS with a newer version, or merging, no mistakes
● So we just install a new boot environment
● But what about /etc? My machine needs to have a configured 

network for puppet to replace the rest of the configuration
● Let’s make /etc its own filesystem, it can persist through the 

upgrade this way...



What Could 
Possibly Go 

Wrong?



Not So Fast...
● Lots of boot things depend on /etc being there
● No /etc/fstab, no /etc/rc, no /etc/rc.conf, no /etc/ttys
● Don’t want to have to run etcupdate or mergemaster
● Steal from NanoBSD? A read-only /etc recreated from /cfg
● Then learned about loader.conf variable: init_script see loader(8)

● Use init_script to mount /cfg very early during boot
● Replace persistent files in /etc with symlinks to /cfg



What is this init_script?
mount -p | while read _dev _mp _type _rest; 
do
    [ $_mp = "/" ] || continue
    if [ $_type = "zfs" ] ; then
            pool=${_dev%%/*}
            zfs mount ${pool}/cfg
    fi
    break
done



How does that work?
● /cfg populated with ~10 files that persist thru upgrade
● Configure network (rc.conf.*), sysctls, SSHd keys, fstab, etc
● Rest of /etc can be replaced with stock files
● Never have to merge /etc/rc.d files again
● Never get <<< === >>> marks in .conf files again
● Originally manually recreated symlinks over stock installs
● Used a VM and a script to make new BEs to ship



How do you deploy a BE?
● Create an image:

○ zfs snapshot img/ROOT/be@snap
○ zfs send -pec img/ROOT/be@snap | xz -9 > bename.zfs.xz

● Apply the image: 
○ fetch -o - https://svr/bename.zfs.xz | unxz | zfs recv 

zroot/ROOT/newbe
● Boot Once:

○ zfsbootcfg zfs:zroot/ROOT/newbe:



Shortcomings
● We were still doing pkg upgrade -f in a chroot for the base 

system boot environment plus each jail
● Building images was painfully manual
● Missing a step or file almost every time
● Bootstrapping a fresh install was still a bunch of manual work, 

over slow IPMI
● Not usable by anyone else, too many sharp edges



Using BEs at Scale
● Over 100 servers, 38 DCs, 11 countries
● Only myself and 1 full time sysadmin
● Mix of versions, 11.1, 11.2, 12.0, 13-CURRENT
● freebsd-update upgrade too manual
● zfs recv; zfsbootcfg; reboot  takes less than a minute
● Failure is gracefully, cycle power and returns to working 

config
● Remote upgrades with confidence, without console access



Not Just for Packages Anymore
● Poudriere is used to build official FreeBSD binary packages
● Uses Jails, and optionally ZFS and TMPFS for performance
● Starts 1 jail per core, builds one package in each jail, only 

dependencies installed (clean env), no network connection
● Ensures you don’t introduce undeclared dependancies
● You can use it to build your own customized package

○ ports tree * freebsd version * arch * set



A Better Way to Build
● During the development of this upgrade procedure, I 

happened to be talking with Baptiste Daroussin (bapt@) who 
informed me of his previous work on ‘poudriere image’

● Designed to create customized VM or USB images. Used at 
Gandi to build FreeBSD images for their Public Cloud

● Supports overlays and preinstalled packages
● Targets: iso, iso+(z)mfs, usb, usb+(z)mfs, rawdisk, zfsrawdisk, 

tar, firmware, embedded



Poudriere Image ZFS BE Support
● After discussion it was decided that zfs send should be added 

as an output format to ‘poudriere image’
● New targets: zfssend (full pool) and zfssend+be (just the BE)
● Modified overlay support to handle symlinks better
● Added support for a ‘ZFS Layout’ config file, in the same 

format used by bsdinstall, to datasets to create
● Control what files are part of the Boot Environment
● You can spin out /usr/local on its own filesystem if you wish



New Problem: Fresh Installs
● Previously, we used IPMI Remote Media feature to run 

bootonly.iso on each machine using ‘bsdinstall’
● No PXEBOOT with only 1-3 servers per DC
● Now we make our own iso+mfs image
● Prompts for some config details (no DHCP)
● Partition disks and create an empty pool
● Then zfs recv a full pool image on to it



Poudriere Image for Everyone
● Many recent enhancements upstreamed
● Work-in-Progress at https://github.com/allanjude/poudriere
● Use it to create your own custom images
● Build from poudriere jails you already have to build packages
● Or create from releases without having to compile!
● New Image Formats? vmdk, qcow2, vhd, MBR (CSM & EFI), 

GPT (CSM, EFI, both), <yours>



Enhancing Poudriere Image
● Needs better naming for image types
● Should support many more combinations
● Use it to replace tools/boot/rootgen.sh
● Should integrate various ‘Cloudware’
● Replicate features of ‘release’ building bits
● Support for post-build scripts (chroot)
● More appliance building features - (talk to me if interested)
● What features do you need?





More Resources
● Want to know more about ZFS?

○ “FreeBSD Mastery: ZFS”
○ “FreeBSD Mastery: Advanced ZFS”
○ Not just for FreeBSD
○ DRM-Free ebooks ZFSBook.com

● BSDNow.tv - Weekly video podcast on BSD & ZFS
○ More questions? feedback@bsdnow.tv

● @allanjude on twitter


