ZFS Powered
Magic Upgrades

Using boot environments for
atomic in-place upgrades

Summary & Introductions

Allan Jude Klara Inc.
FreeBSD Core Team FreeBSD Professional

OpenZFS Developer Services and Support

klarasystems.com

i

What is a boot
environment?
How do they
work?

Creating and
managing boot
environments

Covered in this presentation

e
P
—o0

Deploying boot
environments
remotely

klarasystems.com

Doing it even
better next
time

What we had before: NanoBSD

Divides the disk into 2 partitions (firmware images)

Install the stock image to both

At upgrade time, overwrite the inactive image

Boot-once to the newer image. If it fails, or is otherwise
unserviceable, reboot to good image

If the new image is accepted, configure it as the new default
Repeat process for next upgrade

klarasystems.com

ZFS Boot Environments

ZFS takes this concept further, allows more flexibility

You can have many filesystems, no need to partition your disk
Separate the OS (root FS) from user data (home dirs, logs,
etc)

ZFS has instantaneous snapshots and clones

Snapshot and clone the root filesystem before you make
changes or upgrade

Keep every “working” system image you have ever had

klarasystems.com

How does it work?

e Now you have multiple different ‘versions’ of your root
filesystem to choose from, or revert back to

® Modern FreeBSD boot loader allows you to choose from the
different root filesystems at boot with a nice menu

® Now you can ‘revert’ an upgrade without losing changes to
home directories, logs, databases or other filesystems,
further separating the ‘OS’ from the ‘Data’

klarasystems.com

Regaining Control

The flexibility of ZFS puts you in control

Any files in the filesystem mounted as / are treated as part of
the operating system, kept separate from ‘data’

Any files in other filesystems, are retained, no matter what
‘version’ of the OS you choose to boot from

Packages (/usr/local) and the pkg database (/var/db/pkg) are
included in /. This allows you to ‘undo’ a pkg upgrade too

klarasystems.com

NAME

zroot
zroot/ROOT
zroot/ROOT/default
zroot/tmp
zroot/usr
zroot/usr/obj
zroot/usr/home
zroot/var
zroot/var/audit
zroot/var/crash
zroot/var/log
zroot/var/mail
zroot/var/tmp

USED REFER MOUNTPOINT

19.5G 88K /zroot
1.67G 88K none
1.67G 1.67G /
88K 88K /tmp
12.3G 88K /Jusr
12.3G 8.03G /usr/obj
140M 140M /usr/home
153M 88K /var
88K 88K /var/audit
152M 152M /var/crash
352K 352K /var/log
132K 132K /var/mail
88K 88K /var/tmp

klarasystems.com

Going Further

When upgrading a system, we wanted to replace the entire
OS with a newer version, or merging, no mistakes

So we just install a new boot environment

But what about /etc? My machine needs to have a configured
network for puppet to replace the rest of the configuration
Let’s make /etc its own filesystem, it can persist through the
upgrade this way...

klarasystems.com

What Could
Possibly Go
Wrong?

Not So Fast...

Lots of boot things depend on /etc being there

No /etc/fstab, no /etc/rc, no /etc/rc.conf, no /etc/ttys

Don’t want to have to run etcupdate or mergemaster

Steal from NanoBSD? A read-only /etc recreated from /cfg
Then learned about loader.conf variable: init_script see'0ader(®)
Use init_script to mount /cfg very early during boot

Replace persistent files in /etc with symlinks to /cfg

klarasystems.com

What is this init_script?
mount -p | while read _dev _mp _type _rest;
do
[S_mp = "/"] || continue
if [S_type = "zfs"] ; then
pool=${_dev%%/*}
zfs mount ${pool}/cfg
f4
break
done arasystems.com

How does that work?

/cfg populated with ~10 files that persist thru upgrade
Configure network (rc.conf.*), sysctls, SSHd keys, fstab, etc
Rest of /etc can be replaced with stock files

Never have to merge /etc/rc.d files again

Never get <<< === >>> marks in .conf files again

Originally manually recreated symlinks over stock installs
Used a VM and a script to make new BEs to ship

klarasystems.com

How do you deploy a BE?

® (reate animage:

o zfs snapshot img/ROOT/be@snap

o zfs send -pec img/ROOT/be@snap | xz -9 > bename.zfs.xz
e Apply the image:

o fetch -o - https://svr/bename.zfs.xz | unxz | zfs recv

zroot/ROOT/newbe

® Boot Once:

o zfsbootcfg zfs:zroot/ROOT/newbe:

klarasystems.com

Shortcomings

We were still doing pkg upgrade -f in a chroot for the base
system boot environment plus each jail

Building images was painfully manual

Missing a step or file almost every time

Bootstrapping a fresh install was still a bunch of manual work,
over slow IPMI

Not usable by anyone else, too many sharp edges

klarasystems.com

Using BEs at Scale

Over 100 servers, 38 DCs, 11 countries

Only myself and 1 full time sysadmin

Mix of versions, 11.1, 11.2, 12.0, 13-CURRENT
freebsd-update upgrade too manual

zfs recv; zfsbootcfg; reboot takes less than a minute
Failure is gracefully, cycle power and returns to working
config

Remote upgrades with confidence, without console access

klarasystems.com

Not Just for Packages Anymore

Poudriere is used to build official FreeBSD binary packages
Uses Jails, and optionally ZFS and TMPEFS for performance
Starts 1 jail per core, builds one package in each jail, only
dependencies installed (clean env), no network connection
Ensures you don’t introduce undeclared dependancies
You can use it to build your own customized package

o ports tree * freebsd version * arch * set

klarasystems.com

A Better Way to Build

e During the development of this upgrade procedure, |
happened to be talking with Baptiste Daroussin (bapt@) who
informed me of his previous work on ‘poudriere image’

® Designed to create customized VM or USB images. Used at
Gandi to build FreeBSD images for their Public Cloud

® Supports overlays and preinstalled packages

® Targets: iso, iso+(z)mfs, usb, usb+(z)mfs, rawdisk, zfsrawdisk,
tar, firmware, embedded

klarasystems.com

Poudriere Image ZFS BE Support

After discussion it was decided that zfs send should be added
as an output format to ‘poudriere image’

New targets: zfssend (full pool) and zfssend+be (just the BE)
Modified overlay support to handle symlinks better

Added support for a ‘ZFS Layout’ config file, in the same
format used by bsdinstall, to datasets to create

Control what files are part of the Boot Environment

You can spin out /usr/local on its own filesystem if you wish

klarasystems.com

New Problem: Fresh Installs

® Previously, we used IPMI| Remote Media feature to run
bootonly.iso on each machine using ‘bsdinstall’

No PXEBOOT with only 1-3 servers per DC

Now we make our own iso+mfs image

Prompts for some config details (no DHCP)

Partition disks and create an empty pool

Then zfs recv a full pool image on to it

klarasystems.com

Poudriere Image for Everyone

Many recent enhancements upstreamed

Work-in-Progress at https://github.com/allanjude/poudriere
Use it to create your own custom images

Build from poudriere jails you already have to build packages
Or create from releases without having to compile!

New Image Formats? vmdk, gcow?2, vhd, MBR (CSM & EFl),
GPT (CSM, EFI, both), <yours>

klarasystems.com

Enhancing Poudriere Image

Needs better naming for image types

Should support many more combinations

Use it to replace tools/boot/rootgen.sh

Should integrate various ‘Cloudware’

Replicate features of ‘release’ building bits

Support for post-build scripts (chroot)

More appliance building features - (talk to me if interested)
What features do you need?

klarasystems.com

QUESTIONS

722

More Resources

e Want to know more about ZFS?
o “FreeBSD Mastery: ZFS”
o “FreeBSD Mastery: Advanced ZFS”
o Not just for FreeBSD
o DRM-Free ebooks ZFSBook.com
e BSDNow.tv - Weekly video podcast on BSD & ZFS
o More questions? feedback@bsdnow.tv
® @allanjude on twitter

klarasystems.com

