
AUTOMATED FIREWALL
TESTING

KRISTOF PROVOST

SHAMELESS SELF-PROMOTION

WHO AM I?

▸ Kristof Provost

▸ kp@FreeBSD.org

▸ pf (in FreeBSD) maintainer

▸ Embedded Linux projects

▸ Not for sale

▸ For rent

▸ reasonable rates

mailto:kp@FreeBSD.org

WHAT’S THIS PF THING?

PF

▸ Packet Filter

▸ Imported from OpenBSD

▸ Yes, a while ago

▸ Shiny things in FreeBSD that are not in OpenBSD

▸ vnet

▸ multi-core capable

WHY?

WHY AUTOMATED TESTING?

▸ Make sure things actually work

▸ Convenient test case

▸ Prevent regressions

▸ Quick sanity check when making changes

BAD THINGS TO HAPPEN TO GOOD CODE

REGRESSIONS

▸ IPv6 fragment handling

▸ IPv6 fast path code broke it

▸ Took ~9 months to discover and fix

▸ IPv6 fragments, again

▸ Fix for https://nvd.nist.gov/vuln/detail/CVE-2018-6923 broke things

▸ Tests found it immediately

▸ two weeks between introduction and fix

▸ Heisenbug. Went away during DTracing

https://nvd.nist.gov/vuln/detail/CVE-2018-6923

BUGSPOTTING

int
frag6_input(struct mbuf **mp, int *offp, int proto)
{
 /* ... (9 lines) */
 uint32_t hash, hashkey[sizeof(struct in6_addr) * 2 + 1],
*hashkeyp;

 /* ... (78 lines) */

 hashkeyp = hashkey;
 memcpy(hashkeyp, &ip6->ip6_src, sizeof(struct in6_addr));
 hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
 memcpy(hashkeyp, &ip6->ip6_dst, sizeof(struct in6_addr));
 hashkeyp += sizeof(struct in6_addr) / sizeof(*hashkeyp);
 *hashkeyp = ip6f->ip6f_ident;
 hash = jenkins_hash32(hashkey, nitems(hashkey), V_ip6q_hashseed);
 hash &= IP6REASS_HMASK;
 head = IP6Q_HEAD(hash);
 IP6Q_LOCK(hash);

 /* ... */
}

I FIXED A THING!

diff --git a/sys/netinet6/frag6.c b/sys/netinet6/frag6.c
index 0f30801540a..bbdbf448f7c 100644
--- a/sys/netinet6/frag6.c
+++ b/sys/netinet6/frag6.c
@@ -218,7 +218,9 @@ frag6_input(struct mbuf **mp, int *offp, int proto)
 int offset = *offp, nxt, i, next;
 int first_frag = 0;
 int fragoff, frgpartlen; /* must be larger than u_int16_t */
- uint32_t hash, hashkey[sizeof(struct in6_addr) * 2 + 1], *hashkeyp;
+ uint32_t hashkey[(sizeof(struct in6_addr) * 2 +
+ sizeof(ip6f->ip6f_ident)) / sizeof(uint32_t)];
+ uint32_t hash, *hashkeyp;
 struct ifnet *dstifp;
 u_int8_t ecn, ecn0;
 #ifdef RSS

WHAT DO WE GET OUT OF IT?

OBJECTIVES

▸ Easy to write

▸ Easy for everyone to run

▸ Fast to run

▸ Integrate with ATF / ci.freebsd.org

http://ci.freebsd.org

CI.FREEBSD.ORG

http://ci.freebsd.org

HOW

TAKE ONE: HARDWARE

▸ Send packets from A to B, check replies

▸ Server / switch / server

▸ But what if we want to forward?

▸ Server / switch / server / switch / server

▸ What if we want to test pfsync or carp?

▸ server / switch / server + server / switch / server

ISSUES WITH TAKE ONE

▸ What if we block all traffic?

▸ Serial lines?

▸ What pf or FreeBSD version on all systems?

▸ Netboot?

▸ Panics?

▸ What about even more complex setups?

▸ Where does all this hardware live?

▸ How do other people write tests?

▸ Standardised hardware?

HOW

TAKE TWO: VIRTUAL HARDWARE

▸ bhyve!

▸ Approach taken in GSoC 2017

ISSUES WITH TAKE TWO

▸ What if we block all traffic?

▸ Emulated serial port

▸ Nested bhyve … (ci.freebsd.org)

▸ Really annoying to build VM during test run

▸ Panics? Possible, but still annoying

▸ Slow to run

http://ci.freebsd.org

STOP SAYING WHAT WON’T WORK ALREADY

TAKE THREE: VNET

▸ Virtual network stack

▸ Associated with jail

▸ Enabled by default in 12.0

▸ pf supports this (as of 12.0)

OKAY, SO HOW DO I START A JAIL WITH ITS OWN STACK? I BET IT’S HARD.
IT’S HARD ISN’T IT?

▸ sudo jail -c name=alcatraz vnet persist

WHAT? NO NETWORK? I BET THAT’S HARD!

▸ sudo ifconfig epair create

▸ epair0a / epair0b

▸ sudo ifconfig epair0a 192.0.2.1/24 up

▸ sudo jail -c name=alcatraz vnet persist
vnet.interface=epair0b

▸ sudo jexec ifconfig epair0b 192.0.2.2/24 up

▸ ping -c 1 192.0.2.2

SAMPLE TEST: PASS_BLOCK (1/3)

$FreeBSD$

. $(atf_get_srcdir)/utils.subr

atf_test_case "v4" "cleanup"
v4_head()
{
 atf_set descr 'Basic pass/block test for IPv4'
 atf_set require.user root
}

SAMPLE TEST: PASS_BLOCK (2/3)

v4_body()
{
 pft_init

 epair=$(pft_mkepair)
 ifconfig ${epair}a 192.0.2.1/24 up

 # Set up a simple jail with one interface
 pft_mkjail alcatraz ${epair}b
 jexec alcatraz ifconfig ${epair}b 192.0.2.2/24 up

 # Trivial ping to the jail, without pf
 atf_check -s exit:0 -o ignore ping -c 1 -t 1 192.0.2.2

 # pf without policy will let us ping
 jexec alcatraz pfctl -e
 atf_check -s exit:0 -o ignore ping -c 1 -t 1 192.0.2.2

 # Block everything
 pft_set_rules alcatraz "block in"
 atf_check -s exit:2 -o ignore ping -c 1 -t 1 192.0.2.2
}

SAMPLE TEST: PASS_BLOCK (3/3)

v4_cleanup()
{
 pft_cleanup
}

atf_init_test_cases()
{
 atf_add_test_case "v4"
}

SAMPLE OUTPUT

% sudo kyua test pass_block:v4

pass_block:v4 -> passed [1.200s]

Results file id is usr_tests_sys_netpfil_pf.20190106-081724-193657

Results saved to /root/.kyua/store/results.usr_tests_sys_netpfil_pf.
20190106-081724-193657.db

1/1 passed (0 failed)

PFSYNC: FOR ADVANCED USERS (1/2)

basic_body()
{
 pfsynct_init

 epair_sync=$(pft_mkepair)
 epair_one=$(pft_mkepair)
 epair_two=$(pft_mkepair)

 pft_mkjail one ${epair_one}a ${epair_sync}a
 pft_mkjail two ${epair_two}a ${epair_sync}b

 # pfsync interface
 jexec one ifconfig ${epair_sync}a 192.0.2.1/24 up
 jexec one ifconfig ${epair_one}a 198.51.100.1/24 up
 jexec one ifconfig pfsync0 \
 syncdev ${epair_sync}a \
 maxupd 1 \
 up
 jexec two ifconfig ${epair_two}a 198.51.100.2/24 up
 jexec two ifconfig ${epair_sync}b 192.0.2.2/24 up
 jexec two ifconfig pfsync0 \
 syncdev ${epair_sync}b \
 maxupd 1 \
 up

PFSYNC: FOR ADVANCED USERS (2/2)

 # Enable pf!
 jexec one pfctl -e
 pft_set_rules one \
 "set skip on ${epair_sync}a" \
 "pass keep state"
 jexec two pfctl -e
 pft_set_rules two \
 "set skip on ${epair_sync}b" \
 "pass keep state"

 ifconfig ${epair_one}b 198.51.100.254/24 up

 ping -c 1 -S 198.51.100.254 198.51.100.1

 # Give pfsync time to do its thing
 sleep 2

 if ! jexec two pfctl -s states | grep icmp | grep 198.51.100.1 | \
 grep 198.51.100.2 ; then
 atf_fail "state not found on synced host"
 fi
}

COPY PASTA!

WHERE TO FIND THE TESTS

▸ Source

▸ /usr/src/tests/sys/netpfil/pf

▸ Installed

▸ /usr/tests/sys/netpfil/pf

DO IT YOURSELF TESTING

HOW DO I RUN TESTS?

▸ pkg install kyua scapy

▸ kldload pfsync

▸ cd /usr/tests/sys/netpfil

▸ kyua test

SERIOUSLY, WRITE TESTS.
TESTS ARE GOOD.

Me. Just now.

PROFOUND QUOTE

SERIOUSLY, WHY THOUGH?

WHAT’S IN IT FOR YOU?

▸ Prototype setups

▸ Prevent your use case from breaking

▸ Make it easy for me to fix your bug

▸ Seriously. I’m lazy. Make it easy

▸ Often reproducing is more than half of the actual work

▸ Assuming I even understand your setup

▸ With a good test it’s often easier to fix than to review a patch

▸ I’d have to write the test anyway. Do it for me

▸ Money also motivates me

"I CAN’T BE FIRST!”

OTHER VNET TESTS

▸ netipsec

▸ Olivier was tired of IPSec being broken

▸ Now

▸ there are tests

▸ IPSec isn’t broken

▸ If someone does break it, Li-Wen will shout[*] at them

[*] WELL… POLITELY ASK THEM TO FIX IT

QUESTIONS?

DEMO TIME!
WHAT COULD GO WRONG?

