
syzkaller

Mark Johnston
markj@FreeBSD.org

FreeBSD Bay Area Vendor Summit
October 12, 2019

markj@FreeBSD.org

System Call Fuzzing: What?

I Common syscall usage patterns cover a small space
I Why would you ever call send(2) after listen(2)?

I Increase coverage by generating and executing programs

I Look for crashes, hangs, sanitizer reports, etc.

I Cannot easily validate positive results

for (;;) {

p = generate_prog();

execute(p);

}

System Call Fuzzing: Why?

I Kernel is part of the TCB

I System calls present a huge attack surface

I Jails and Capsicum help but are not sufficient
I FreeBSD has 500 system calls

I Plus COMPAT FREEBSD32, COMPAT LINUX...
I Plus de-muxing via ioctl(2), fcntl(2), setsockopt(2)...

I Fine-grained parallelism makes things much worse

System Call Fuzzing: How?

I Naive fuzzing mostly catches input validation bugs

I Can do better with semantic knowledge of syscall params

I Idea: use code coverage as input to test case generation

for (cov = NULL;;) {

p = generate_prog(corpus);

cov1 = execute(p);

if (!cov.contains(cov1)) {

cov.add(cov1);

corpus.add(p);

}

}

Introduction to syzkaller

I “Unsupervised, coverage-guided kernel fuzzer”

I By Dmitry Vyukov at Google, initially for Linux

I https://github.com/google/syzkaller/docs

I Kitchen sink approach:
I Manages VMs running target kernels
I Generates minimal reproducibles
I Can inject network, USB, etc. packets
I Collects, summarizes and deduplicates crash reports
I Collects kernel code coverage info
I Presents crash reports and test cases in a web dashboard
I syz-ci periodically rebuilds kernel and syzkaller itself
I Checks for regressions
I Bisects new crashes
I ...

https://github.com/google/syzkaller/docs

syzkaller on FreeBSD

corpus,
crash reports

syz-manager

/dev/kcov

SSH, SCP

syz-fuzzer

syz-executor

VMs

bhyve,
ZFS

syscalls

:80

syz-prog2c

.c files

syz-ci

gmakebuildkernel

netdumpd vmcores

KCOV

I Thin user interface around LLVM SanitizerCoverage for kernel

I Initial implementation by mhorne@, finished by andrew@

I Open /dev/kcov and mmap to create shared buffer

I KIOENABLE ioctl enables tracing for the calling thread

I Buffer entries generated for every edge and comparison

include "./GENERIC"

ident SYZKALLER

options COVERAGE

options KCOV

System Call Descriptions

I syzkaller defines a syscall description grammar

I Supports “enhanced” types: flags, file descriptors, ...

I Implements compound types

I Each system call needs to be described - lots of work

I Some system calls have multiple flavours, e.g. connect(2)

#include <fcntl.h>

open(file ptr[in, filename], flags flags[open_flags], mode flags[open_mode]) fd

open_flags = O_RDONLY, O_WRONLY, O_RDWR, O_APPEND, ...

open_mode = S_IRUSR, S_IWUSR, ...

stat {

dev int64

ino int64

nlink int64

mode int16

__pad0 const[0, int16]

uid uid

gid gid

...

}

Sample Reproducer

#{"threaded":true,"collide":true,"repeat":true,"procs":4,"sandbox":"none","fault_call":-1,

"tmpdir":true,"segv":true}

r0 = socket(0x2, 0x10000001, 0x84)

connect$unix(r0, &(0x7f0000000000)=@file={0xbd5699bc1ec0282, ’./file0\x00’}, 0x10)

getsockopt$inet6_sctp_SCTP_ENABLE_STREAM_RESET(r0, 0x84, 0x900,

&(0x7f0000000080)={<r1=>0x0, 0x4},

&(0x7f00000000c0)=0x8)

getsockopt$inet6_sctp_SCTP_DELAYED_SACK(r0, 0x84, 0xf, &(0x7f0000000180)={r1, 0x9, 0x6},

&(0x7f00000001c0)=0xc)

listen(r0, 0x9)

setsockopt$inet6_sctp_SCTP_EVENTS(r0, 0x84, 0xc, &(0x7f0000000040)={0x0, 0x0, 0x0, 0x6}, 0xb)

setsockopt$inet6_sctp_SCTP_RTOINFO(r0, 0x84, 0x1, &(0x7f0000000100)={0x0, 0x0, 0x80000001}, 0x10)

shutdown(r0, 0x1)

Run with sudo syz-execprog ./repro.syz

syzbot

I Hosted CI for syzkaller, on GCE

I https://syzkaller.appspot.com

I Fuzzes many different operating systems

I Thousands of bugs found

I Mails syzkaller-freebsd-bugs@googlegroups.com when
a new crash is found

I Resolve reports automatically using a Reported-by tag:

commit fb4ce630e036f6b73bef06c3c4b9c7bf363a9b23

Author: markj <markj@FreeBSD.org>

Date: Mon Mar 25 21:38:58 2019 +0000

Reject F_SETLK_REMOTE commands when sysid == 0.

A sysid of 0 denotes the local system, and some handlers for remote

locking commands do not attempt to deal with local locks. Note that

F_SETLK_REMOTE is only available to privileged users as it is intended

to be used as a testing interface.

Reviewed by: kib

Reported by: syzbot+9c457a6ae014a3281eb8@syzkaller.appspotmail.com

MFC after: 2 weeks

Sponsored by: The FreeBSD Foundation

Differential Revision: https://reviews.freebsd.org/D19702

https://syzkaller.appspot.com
syzkaller-freebsd-bugs@googlegroups.com

Netdump

I syzkaller does not do a perfect job generating reproducers:
I Some panics happen asynchronously (e.g., in a callout)
I Some reproducers do not work (race conditions)
I Reproducer minimization is not perfect or reliable

I VM disk image is discarded during reboot

I netdump(4) to the rescue

FreeBSD and syzkaller

Why is it worth investing time into syzkaller?
What do we need?

I Bug triage and analysis

I More system call descriptions

I Fuzzing ZFS, NFS-based images

I Fuzzing non-amd64 kernels

I syzkaller jail image

I Sanitizer support

