
Parallel, Multi-Axis Regression and Performance Testing
with FreeBSD, OpenZFS, and bhyve

Michael Dexter
editor@callfortesting.org

AsiaBSDCon 2019, Tokyo, Japan

Contemporary Unix, defined as the sum of
open source BSD Unix projects, Illumos
distributions and GNU/Linux distributions,
plus the OpenZFS cross-platform file
system, can attribute their success to the
collaborative work of like-minded academic,
commercial, and volunteer developers
around the world. Governed by a mix of
licenses, best practices, community norms,
and personal passion, open source projects
like modern Unix operating systems and
OpenZFS largely lack centralized Quality
Engineering institutions, deferring Quality
Engineering and Quality Control
responsibilities to participating developers
and the end user. This arrangement promises
the widest-possible array of regression and
performance testing tools, loads, and
procedures, at the expense of providing any
guarantees, true to the disclaimers of the
licenses under which these projects are
distributed. This paper will examine how
“parallel, multi-axis” testing, defined as
testing multiple software versions, operating
systems, “options”, compilers, and
architectures, or axes, in parallel, will
improve the identification and isolation of
reliability and performance regressions.

Identifying a Computing Axis

Borrowing from the mathematical definition
of an Axis, a fixed reference line for the
measurement of coordinates, the
quintessential computing axis is any given
software versioning: it increments, in the
case of SVN revisions, from zero to an

architectural limit, where the highest number
is always the latest revision and any point in
the history is easily located and visited.
Less-linear, yet equally traversable axes
include multiple operating systems, their
sequential versions, their userland and kernel
build “options”, their supported computing
architectures, and their supported
hypervisors. Each of these axes is of
equally-unique and identifiable value,
enabling for their linear traversal and most
importantly, testing in parallel. Parallel
testing is facilitated by multiple identical
hardware machines, unless of dissimilar
hardware architecture, and multiple virtual
machines executed in parallel. While
identical hardware machines will provide the
greatest consistency for performance testing,
virtual machines are adequate for providing
meaningful reliability testing of many
computing resources.

The Version Axis

Of the testing Axes within the scope of this
paper, the version axis is the most familiar.
Incrementing software versioning is
provided manually by the developer, or
automatically by a version control system.
The testing host operating system for this
paper, FreeBSD, provides two distinct
version identifiers: Named Releases and pre-
releases, i.e. 12.0-RELEASE and 12.0-RC1,
and incrementing SVN Revisions, i.e.
341707. These named and numeric
identifiers allow for unambiguous revision
identification, in contrast to the hash-based

“numbering” semantics used in some
version control systems. Two distinct
challenges exists however, to obtaining open
source releases by named binary Release:
incomplete historical release preservation
and the rising popularity of distributing open
source operating systems via content
delivery networks (CDNs). The first of these
challenges can largely be attributed to the
unavailability of terabyte and larger-capacity
storage devices until late in each operating
system project’s history, allowing for
centralized and distributed preservation of
project history. The second of these
challenges is simply the fact that content
distribution networks are designed for the
rapid distribution of the latest software
releases, and not the preservation of historic
releases. The result is a rapid expiration of
available releases distributed via CDN than
with traditional mirrors. Part of this paper’s
work is a rebuilding of the FreeBSD release
history in coordination with users around the
World.

The Operating System Axis

The set of available operating systems is
extensive, and multiplied by their individual
version axes, overwhelming. The scope of
this testing will be limited to operating
systems that support the OpenZFS file
system with a limited number of versions
and a goal of all supported architectures. The
result is a focus on FreeBSD, NetBSD,
Illumos derivatives, primary (not derived)
GNU/Linux distributions, macOS, and
Microsoft Windows.

The “Options” Axis

Of the target operating systems within the
scope of this work, FreeBSD is rich with
userland and kernel “source build options”

that determine what features are included or
excluded from the compiled operating
system. Similar to the situation with
FreeBSD historic releases however, these
options are often under-documented or non-
functional, resulting in the first test of this
paper: ongoing Build Option Survey
(/usr/src/tools/tools/build_option_survey/)
runs, and the development of a “STUDENT”
kernel configuration file that progressively
introduces the options needed to build and
eventually boot the FreeBSD kernel under
the bhyve hypervisor.

The Compilers Axis

While FreeBSD employs the Clang compiler
as its default, in-base compiler, the
buildability of the operating system with the
GCC and other compilers provides an
important validation vector. FreeBSD 8.0
could be built with the Portable C Compiler
(pcc) and this testing will facilitate the
institutional compilation of FreeBSD with
alternative compilers and across the versions
axis. By extension, FreeBSD’s promise, but
not guarantee that each previous and future
release of FreeBSD should be buildable
under any given release, a forward/backward
version axis traversal test should be trivial to
conduct.

The Architecture Axis

FreeBSD offers the most OpenZFS-
supported architectures of any operating
system. The relative low-cost of embedded
and used non-Intel machines allow for this
testing to include non-Intel architectures
including ARM, ARM64, PowerPC, and
Sparc64. GNU/Linux distributions are
candidates for inclusion when their non-Intel
support expands.

The POSIX Testing Environment

Testing in parallel requires, by definition, a
consistent testing environment in order to
provide meaningful results. It is tempting to
consider a cross-platform system orchestration
solution such as Ansible or Puppet for the task
of abstracting away platform-specific nuances,
but these solutions provide high-overhead in
exchange for limited domain-specific abilities,
notably testing, rather than configuration. In
consideration of the fact that the majority of the
operating systems in the testing scope are near-
POSIX compliant, establishing a common
POSIX testing environment is the most
reasonable strategy to minimize platform-
specific nuances. In service of the goal of
traversing the version axis on FreeBSD back to
“historic” releases, a POSIX environment
becomes a firm requirement for want of modern
system orchestration tools on anything but the
most recent operating system releases. In service
of testing the Windows operating system, the
Cygwin near-POSIX environment has proven
the most flexible with the widest of array of third
party open source packages for the Windows
operating system.

With the operating system-specific ABI
requirements of a POSIX environment satisfied,
a base set of utilities will provide near-identical
functionality on all platforms in the scope of the
testing. These utilities include at a minimum
sh(1), ssh(1), time(1), date(1),
touch(1), dd(1), truncate(1),
mkdir(1), rmdir(1), sha512(1),
zpool(1), zfs(8), and ztest(1).
Supplementary utilities include gdate(1) for
higher-resolution timing, and traditional
benchmarking utilities like bechmarks/fio,
bechmarks/bonnie++, and
bechmarks/sysbench. Of these tools, disk
partitioning utilities are the most platform-
dependent, but fortunately, any discrepancy in
the execution times of partitioning tools across
operating systems are not relevant to to the
runtime testing of a file system.

Finally, the bhyve Hypervisor and Jail
containment system are essential to both
preflighting tests prior to their deployment on
dedicated hardware and the execution of some
tests, such as those on historic versions of
FreeBSD.

The ptime(1) Utility

While the POSIX standard is well established, it
makes makes no guarantees as to the machine
parsability of utility output. This paper proposes

the ptime(1) or precision time utility to
provide enhanced, machine-parsable execution
reporting to standard I/O shell interpreter
pipelines:

NAME
 ptime – Precision execution time utility

SYNOPSIS
 ptime [options] [command]

DESCRIPTION

ptime provides Unix epoch time and utility execution time in seconds,
milliseconds and nanoseconds. It can also provide the time difference
between two files based on their datestamps.

OPTIONS

-h Display usage
 -s Display output in seconds (default without -s)
 -m Display output in milliseconds
 -n Display output in nanoseconds

 -f First file (requires -l)
 -l Last file (requires -f)
 -r Override return value with output

EXAMPLES

 Output Unix Epoch time in seconds (-s implied)

ptime
1544000077 <equivalent to date +%s>

 Output Unix Epoch time in milliseconds

ptime -m
154849734068255 <equivalent to ((gdate +%s%N))/1000000>

 Output Unix Epoch time in nanoseconds

ptime -n
1548497340682551000 <equivalent to gdate +%s%N>

Output execution time of ‘sha256 -t’ time in nanoseconds

ptime -n sha256 -t
1548497340682551000

Output the time difference between two files

ptime -f /build/firstfile -l /build/lastfile
123467

Return Unix Epoch time in seconds

ptime -r
echo $?
1544000077

Additional tools include the bd(8) block
device, and be(8) boot environment utilities
for the management of block device partitioning
and formatting, and OpenZFS boot
environments respectively (Dexter,
AsiaBSDCon 2018).

Regression and Performance Testing

Equipped with a cross-platform, near-POSIX
test environment and support utilities, a baseline
of tests can be performed along each axis.

FreeBSD Version and Compiler Axis: Build
forward and backward versions of FreeBSD on
any given version with the built-in compiler and
optional compilers.

FreeBSD Option Axis: Extend the Build Option
Survey framework or a new framework to kernel
configuration file build options, identifying their
interdependencies.

bhyve Hypervisor vCPU Topology: Validate the
January, 2019 bhyve vCPU topology
improvements (reviews.freebsd.org/D18815 and
related) that allow for up to 65 packages/sockets
and 255 cores per package. Step through
additional packages and cores one by one. This
test is performed with a wrapper script that
simply boots a virtual machine that is designed
to shut down via /etc/rc.local. This test
should eventually traverse the operating system
axis, ensuring that a representative set of non-
FreeBSD operating systems are validated with
difference vCPU configurations.

OpenZFS Testing along the Operating System
and Architecture Axes: Perform a myriad of tests
in parallel across the operating system axis:
repeated zpool creation and destruction, nested
directory and file creation, high-count file
touch(1)ing, cross-platform pool importation,
identification of SMB and NFS performance
cliffs based on the amount of data transferred,
scripted fio(1) testing, and execution of the
OpenZFS ztest(1) suite. With new OpenZFS
platforms like Windows emerging, this testing
has revealed that basic assumptions cannot be
made, such as the success of the touch(1)
utility.

Conclusions

The parallel, multi-axis testing approach for
regressions and performance telemetry should
provide new insights into reliability and
performance issues that will be overlooked by
domain-specific testing. This work is inspired by
real-world OpenZFS on FreeBSD performance
issues and combined with a version axis
bisection strategy, should identify regressions at
a faster pace than is possible with traditional
testing methods. This testing also aims to
accelerate the stability of new OpenZFS
platforms including NetBSD and Windows.
Finally, all of the tools used in this testing will
be available on GitHub or equivalent.

