
Monitoring FreeBSD Systems
What to (Not) Monitor

Andrew Fengler
ScaleEngine Inc.

andrew.fengler@scaleengine.com

Abstract
Operators of computer systems need to be aware of the

state of their systems. As systems and networks become more
intricate, the need for this information increases. This increase
in complexity also leads to an increase in failure modes, often
creating modes unique to the environment.

This means that any monitoring setup must be as unique as
the environment it operates on if it is going to be of use. As a
result, it is frequently not possible to simply run an off-the-
shelf solution, and an understanding of the principles behind
monitoring systems must be applied to the implementation of
your solution.

This paper will cover many of the basic areas for monitor-
ing, and how they can be applied to FreeBSD systems.

1 Introduction

Monitoring of large numbers of systems is a complex balance
between being sensitive to abnormal conditions that indicate
problems, and filtering out false positives. Modern operating
systems offer a large number of metrics to monitor, but not all
are useful, and many of the things that are useful to monitor
are not immediately apparent, or are difficult to find, espe-
cially for someone new to monitoring servers. The same error
can have a different meaning or cause depending on other
factors on the system, and without proper monitoring, it will
be difficult to track down the source.

1.1 Reasoning for Monitoring
It is important to understand why we are interested in monitor-
ing a computer system before we implement it. A computer
or the FreeBSD operating system is a very intricate thing.
To monitor all aspects of the system would be an incredible
undertaking. So we need to reduce what we monitor down to
an achieveable quantity.

The reason for running a computer at all is because they
perform useful work. Parts of the computer or operating sys-
tem that is needed to perform that work are important and

need to be monitored. Conversely, any part that is not needed
for this work is unimportant and can be ignored. Attempt-
ing to collect and monitor unimportant information simply
increases the difficulty of determining whether the system is
working as intended.

1.2 An Abridged History of Monitoring Tech-
nologies

In the beginning, all observation of a computer’s state was
done manually by a human operator. Whether this was lights
on a status panel, or messages printed to STDERR, this would
go directly to a human’s attention. Daemons that are not run
interactively log any problems to syslog, and any log entries
with a high enough error level would be shown to the operator.

This methodology has persisted in many ways. Although
on most servers TTY1 is is not watched by anyone, all log
messages of level err1 or higher are printed there by default
in FreeBSD. Many daemons will log errors, or print them to
STDERR, and promptly forget about them, making the error
impossible to spot unless you were filtering through the log
file. Although logging of errors is useful for diagnosing an
issue and determining the cause, is is significantly less useful
for detecting the problem in the first place.

Technologies such as SNMP2 solve some of this problem by
allowing information on the system’s state to be procedurally
retrieved by a remote system. Unfortunately this is limited
to information about the operating system, as few programs
have support for providing data through SNMP.

Many programs now offer some form of status output that
can be externally retrieved. BIND dumps statistics to a file,
Nginx has a status page, and Varnish offers statistics through
varnishstat. Although this allows each program to offer
information tailored to how the program operates, this has
the limitation that each one is unique, and any monitoring

1LOG_ERR is the 4th highest level in syslog. LOG_EMERG, the highest,
is normally broadcast to all users terminals

2SNMP - Simple Network Management Protocol



must be custom-built for the combination of your monitoring
system and the program being monitored.

2 Availability

The simplest form of monitoring is availability checks; i.e.
"does it work?". These tests ensure that at some higher level,
the system works as intended. This could be as simple as send-
ing a ping and seeing if the system responds. If the system
answers the ping, then we can infer many things: the system
is running, it has power, it has a working network connection,
and so on. There are advantages and disadvantages to high-
level tests. They simplify the monitoring by not requiring a
separate check at each level, but if the check fails, the reason
why might take some digging to solve.

One check of this sort is to use netcat to check if a service
is listening on a given port. Figure 1 shows a simple check to
see if a webserver is listening on port 80 on IPv4. This can be
useful for testing services that don’t have an easy way to do
a functionality check, but this way you can at least tell that
something is listening.

Often, a program can listen on multiple ports or addresses.
A typical web server will be listening on ports 80 and 443,
on both IPv4 and IPv6. Doing 4 seperate checks of the web-
server’s status page would be redundant and incur pointless
overheat. If you only are checking one port, you might not
notice a problem on the other ports, such as the server failing
to listen on IPv6, but otherwise working normally on IPv4. A
simple TCP connection check is enough to catch that failure
case.

Other examples of availability checks include loading a
web page, logging in with SSH, and sending an email to a
monitored mailbox.

3 System Resources

A computer offers resources, and services running on the com-
puter will use some of those resources. Ensuring that those
resources are available is one of the main tasks for monitoring
at the operating system level. Some of these resources include
CPU time, memory, disk space, and network bandwidth.

3.1 CPU
SNMP offers 2 ways to get your CPU usage. One is to use the
UCD-SNMP-MIB::ssCpuRaw* values to get a counter of the
CPU time spent and average it on your monitoring interval.
The other is to use the UCD-SNMP-MIB::ssCPU* values which
are an integer, pre averaged over 1 minute, divided down by
the number of processors, and rebased as a percentage. See
figure 2.

These 2 collection methods represent 2 different types of
measurement: the rolling average, and the snapshot. A rolling
average shows an average usage over a given window, in
this case the window is the measurement interval. Rolling
averages will account for all usage in that window, but as a
side effect will smooth out spikes shorter than the window
size. A snapshot shows the exact level at the time of the
measurement. This shows a more exact level, but only at the
time of the measurement. Any spikes outside of the time of
the measurement will be missed.3

Neither is necessarily better, both have their strengths and
weaknesses. If you have a cron job running every 5 minutes
that is using all available CPU for 30 seconds, and you check
CPU usage every 5 minutes, a rolling average will show only
10% usage, and a snapshot might show either 100%, or 0%.

3.2 Load Average
Although it seems like the easiest thing to check, load average
has a number of issues. It fails to account for multiple cores,
and the distinction between cores and hyperthreads is lost on
it. It varies wildly between workloads: our monitoring servers
will show loadavg of 16 on a 4 core machine, with only 30%
CPU usage, and video server with its CPU fully used might
only show a load average of ˜8 on an 8 core machine.

3.3 Memory
We need to ensure that there is free memory available for
programs that need it. However not all memory usage is equal.

3While the UCD-SNMP-MIB::ssCPU* values are strictly a rolling average
over a window of 1 minute, for checks with an interval > 1 minute it is
functionally a snapshot.

$ nc -z -4 host 80
Connection to host 80 port [tcp/http] succeeded!

Figure 1: A simple check with netcat to see if something is listening on port 80

$ snmpget -c public -v 2c server.example.com UCD-SNMP-MIB::ssCpuIdle.0
UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 83
$ snmpget -c public -v 2c server.example.com UCD-SNMP-MIB::ssCpuRawIdle.0
UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 1653347551

Figure 2: Getting CPU data out of SNMP



FreeBSD will put unused memory to use, by using it for cache
and for the ZFS ARC.4 ARC and cache will frequently con-
sume most free memory, but the system will free up memory
being used for cache when needed. This creates a measure-
ment problem, as memory being used for ARC is counted as
wired. You can see an example of this in figure 3. To get use-
ful numbers, you have to count the used memory minus the
ARC, count the ARC and cache as memory that can become
available, and the memory that is truly free.

All of the statistics from the arc and regular memory usage
can be found in sysctl: kstat.zfs.misc.arcstats,
vm.stats, and vm.stats.vm.v_page_size.5 You
can even get a count of how many times the ARC
has been throttled due to memory pressure from
kstat.zfs.misc.arcstats.memory_throttle_count

3.4 Network

Because packets are routed from network provider to network
provider on their route, a problem in the middle of the route
can cause connection issues. Frequently, these problems will
cause packets to be lost, or to be routed on sub-optimal con-
nections and cause the packets to take longer from source to
destination. We can use ICMP between remote systems to
detect loss and high latency along the route.

The status of the network connection itself deserves check-
ing. Ethernet link speeds are typically autonegotiated, and
negotiations can sometimes return a less than optimal result.
Some service providers will throttle your connection speed if
you’re over your usage quota. In any case, it’s good to know
if the connection is operating at the speed we want it to be.
FreeBSD’s ifconfig will show you the media settings for
an interface, which includes the speed:

$ ifconfig | grep media
media: Ethernet autoselect (1000baseT )

4ARC: Adaptive Replacement Cache
5Note that ARC stats are in bytes, and memory stats are in pages, so you

need to multiply memory stats by page size to get an even comparison.

3.5 Bandwidth

Checking the network utilization is pretty straightforward
with SNMP. Net-SNMP implements the IF-MIB::ifXTable,
which shows statistics for each interface. We can get the
number of octets6 sent and received on the second interface
in the table, as in figure 4. Usage is stored as a counter of
total octets sent since system boot. If we store the value and
subtract the old value from the new one, we get a delta of the
total bytes sent over that time interval.

Note that we are using ifXTable which uses 64 bit coun-
ters. SNMP also has ifTable, which only uses 32 bit counters.
A 32 bit counter of bytes will roll over at ˜4 GB, which can
be sent in less than 5 minutes on a 10 Gb/s interface.

For those who rent their servers, the total data transfered can
also be a limited resource. Many providers limit the amount
of data you can send and receive, usually some number of
terrabytes per month. Since the method we’ve discussed for
monitoring network usage measures in deltas of bytes, if we
store those deltas, we can tally them up and measure usage
over the interval of interest. ScaleEngine uses a program
called RTG [1] for this, which logs the deltas to a MySQL
database, where we get the data for usage information.

3.6 Disk Space

Free space on disk is important if anything needs to write to
the disk. Most filesystems, ZFS included, will perform poorly
if they do not have some free space.

A common way to watch your disk space is to use SNMP to
check free space on /. That will not work as expected with
ZFS. Net-SNMP’s disk checks are not ZFS aware, and see
each dataset as a partition, and any data stored on a different
"partition" will cause the root partition to shrink, rather than
show more space used. A stock FreeBSD installation will only
have ˜5 GB on the root dataset, meaning the free space on the /
"partition" won’t drop below 50% free space until there is only
5 GB free for the root dataset. Since most programs will not
be writing to the root dataset, this will only ensure that there
is free space on that one dataset. If you set a reservation on the

6octets = bytes

Mem: 9588K Active, 103M Inact, 2786M Wired, 4992K Cache, 55M Free
ARC: 1935M Total, 603M MFU, 1202M MRU, 560K Anon, 19M Header, 111M Other

Figure 3: Memory usage from top

$ snmpget -c public -v 2c server IF-MIB::ifHCOutOctets.2
IF-MIB::ifHCOutOctets.2 = Counter64: 26790537050371
$ snmpget -c public -v 2c server IF-MIB::ifHCInOctets.2
IF-MIB::ifHCInOctets.2 = Counter64: 17901892810225

Figure 4: Getting counters for the second NIC



root dataset, that will be seen as free space, even though other
datasets that do not have reservations will be out of space.

It’s better to use ZFS to check ZFS. ZFS has some use-
ful tools, and also has good output handling for automatic
parsing:

$ zfs list -pH -o name,used,avail
mjolnir 46128820224 67251605504
mjolnir/ROOT 12187820032 67251605504
mjolnir/ROOT/default 12187729920 67251605504
mjolnir/tmp 157851648 67251605504
mjolnir/usr 29228777472 67251605504
mjolnir/usr/home 27944427520 67251605504

ZFS offers a number of advantages over SNMP for disk
space checks, making it worth the exta labour to implement
the checks. ZFS has per-dataset granularity, quota information
is readily available, and jail usage is easy to break down. If
you’re only able to work with SNMP, then make sure you’re
checking on all datasets you care about, not just /.

3.7 Disk Health
Disks are consumables, whether they are hard disks or solid
state drives. Staying on top of the health of the drives will
allow you to have some chance of anticipating a failure. We
can get the disk information using smartctl.

A study by Google [2] found that the only SMART errors
that correllate to drive failure is reallocated sectors, weakly
correlating for online reallocations, and more strongly for
offline reallocations. SMART value 5 is online reallocation,
and value 198 is offline reallocations. Value 197 is the same as
198 for most manufacturers, Toshiba being the only exception
we’ve encountered. We can monitor these 3 values along with
the overall health check using smartctl. Figure 5 shows an
example of these values.

Also of interest is the SSD wear values, but these vary
between manufacturers and we have yet to find a way to
measure them that gives usable data.

SMART will not predict all failures, and there are failures
external to the drive that can make it unusable. This could be a
cable error, data corruption, or some other error that SMART
doesn’t catch. Checking zpool health is pretty simple: To see
if the drive is in a working state, we can check if ZFS sees the
drive as usable or not.

$ zpool list -o name,health

NAME HEALTH
mjolnir ONLINE

The health column shows the state of the pool, ONLINE is ok,
other states indicate a problem.7 If you want more details,
you can also parse through zpool status to find the exact
drive that has the problems.

4 Precursor Metrics

In addition to system resources, there are many things that
while they do not directly affect the system’s operation, they
can cause problems in some situations.

The temperature of the system can be monitored to watch
for overheating. FreeBSD does not make it obvious when
thermal throttling kicks in, other than some entries in syslog.
You can get the CPU temperatures out of sysctl.

dev.cpu.#.temperature

NTP is important for keeping your clock accurate. If you
drift out of sync, this will cause problems with anything time-
sensitive, including a lot of cryptography. You can check your
offset against an NTP server with ntpdate. Use a server that
is different than the one you’re syncronizing against in order
to catch problems with that server.

$ ntpdate -q 0.pool.ntp.org
... offset -0.007518, ...

While it might not seem useful, monitoring the uptime
of a server can be a good way to catch unexpected reboots.
Check if the uptime is less than twice the alert interval to have
an alert whenever a server reboots. The advantage to using
uptime rather than a cron entry for @reboot is that checking
the uptime with SNMP works on switches, allowing you to
catch reboots that might just apear as a brief period of packet
loss otherwise.8

5 Jails

Jails offer a lot of challenges in obtaining meaningful statis-
tics, especially if you care about isolating to the jail. CPU

7A state of OFFLINE indicates the device was taken offline. While this is
not an error, it is probably not a desired state.

8Switches can reboot really fast, and if it happens between checks there
might not be anything else to give it away

SMART overall-health self-assessment test result: PASSED
5 Retired_Block_Count 0x0033 100 100 003 Pre-fail Always - 0

197 Current_Pending_Sector 0x0022 100 100 000 Old_age Always - 0
198 Offline_Uncorrectable 0x0008 100 100 000 Old_age Offline - 0

Figure 5: SMART values of interest



usage information will include usage from processes outside
the jail. Isolated network metrics are only possible if you are
using vnet, which only became the default in FreeBSD 12. If
you want to run SNMP in the jail, you have to build Net-SNMP
with special options so it works at all. Since much of the re-
source usage information will only be available on the host,
make sure you can corellate services in jails to the host they
are running on to be able to examine the state of resource
availability for that jail.

6 Different Types of Measurements

Regardless of the source of the measurement, the data that
can be retrieved will fit into 2 broad categories.

State measurements are of something that fits into a lim-
ited set of states. This could be a service that is up or down,
whether a connection succeeds or fails, or an HTTP status
code. Each state is typically tied to some stable meaning: a
degraded zpool is a degraded zpool, whether it’s on a super-
computer or your Raspberry Pi.

Metrics are a measurement in some range of possible val-
ues. CPU usage, ICMP RTA9 times, and a count of logged in
users are all examples of this. The administrator’s judgement
is required to establish thresholds for mapping values in this
range to a stable interpretation of the state it represents. These
thresholds will frequently vary from system to system. 600
Mb/s of network traffic might be unremarkable on a router,
but could be worrisome on a server that’s supposed to only be
serving DNS. Tools such as graphs are useful to track histori-
cal values, as the definition of typical may change over time
and as the system itself grows.

7 Conclusions

While the information shown here is by no means exhaustive,
this paper covers a selection of key methods and services for
FreeBSD systems in a server environment. Each environment
is unique, and this paper was based off of only one. However,
the basic principles will remain the same, and the techniques
here can be applied to far more than what the examples hold.

Availability

Most of the monitoring described here has been implemented
by the author, and is available on ScaleEngine’s Github:
https://github.com/scaleengine/se-nagios-plugins

Acknowledgments

Thanks to every sysadmin who solved a problem they faced,
or wrote some script, and provided their work to the world.
The author has been saved many wheel reinventions by simple
blog posts.

Thanks to Allan Jude, for humoring my many experiments
that never panned out.

9Round trip average, or the average time it takes a packet to travel to the
other system and back

References

[1] Robert Beverly. Rtg. http://rtg.sourceforge.net/.

[2] Eduardo Pinheiro, Wolf-Deitrich Weber, and Luiz Andre
Barroso. Failure trends in a large disk drive popula-
tion. In USENIX Conference on File and Storage Tech-
nologies (FAST’07), 2007. https://research.google.
com/archive/disk_failures.pdf.




