
FreeBSD Implementation of PASTE
Michio Honda and Giuseppe Lettieri

1 Overview

PASTE is a network stack architecture that enables han-
dling high I/O rates and efficient persistent memory in-
tegration. FreeBSD implementation of PASTE is an ex-
tension to netmap(4) in two ways. First, it integrates
netmap(4) with the feature-rich kernel TCP/IP imple-
mentation. The netmap API enables a fast datapath that
batches system calls and NIC I/O operations, and the use
of the kernel TCP/IP implementation allows applications
to use familiar socket APIs for control. Second, PASTE
provides applications abstractions where they can move
data between networks and persistent memory without
data copy. This is an important property to efficiently
support persistent memory which is two-three orders of
magnitude faster than solid-state or spinning disks.

2 Kernel TCP/IP support

Support for kernel TCP/IP relies on various in-
kernel socket APIs, including sosend(9), sorecv(9),
soupcall_set(9) and soupcall_clear(9). No ker-
nel modification outside netmap is required. We already
merged sodtor_set(9) to the kernel whose callback is
fired on the socket close event. To understand how the
netmap and in-kernel socket APIs interact with each other,
we begin by explaining the APIs.

Figure 1 shows pseudo code of a TCP server application
with PASTE. The server application initiates the socket as
usual using socket(2), bind(2) and listen(2) (line
2–4). It also open a netmap descriptor whose port type is
“stack” (line 5). This port type is analogous to a ephemeral
vale(4) port. To move data or packets between the stack
port and a physical NIC, the application associates a
NIC with the stack port (line 6). This process internally
instantiates a bridge and attaches a given NIC port to it,
which is much like attaching a NIC to a VALE switch.
When the application dies or explicitly closes the stack
port, the NIC port is also released.

The application then monitor two file descriptors using
poll(2): the TCP socket and netmap descriptor (line 8
and 10). Arrival of a new TCP connection is indicated by
POLLIN event of the listen socket (line 11). The application
accept(2)s this connection, and register the new socket
to the stack port (line 12). After that, the application can

1 main()
2 fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
3 bind(fd, INADDR_ANY);
4 listen(fd, 30);
5 nmd = nm_open(stack:0);
6 ioctl(nmd->fd,, stack:em0);
7 s = socket();bind(s);listen(s);
8 int fds[2] = {nmd, s};
9 for (;;) {
10 poll(fds, 2,);
11 if (fds[1] & POLLIN)
12 ioctl(nmd, NIOCCONFIG, accept(fds[1]));
13 if (fds[0] & POLLIN) {
14 for (slot in nmd->rxring) {
15 int fd = slot->fd;
16 char *p = NETMAP_BUF(slot) + slot->offset;
17 }
18 }
19 }

Figure 1: Pseudo code of PASTE application

send and receive data on this socket using the netmap API,
as explained next.
poll() backend of the netmap descriptor triggers re-

ceive packet I/O of the NIC port associated with the
stack port, followed by processing received packets in
the TCP/IP stack and moves the buffers with in-order
TCP segments to the stack port RX ring. The poll()
also triggers TX ring processing of the stack port, having
the TCP/IP stack process application data and the NIC
transmit packetized data.
The application consumes data on the RX ring of

the stack port (line 14–16). Each ring slot contains two
metadata in addition to len used by the regular netmap
applications: fd that indicates the file descriptor to which
data belong and offset that indicates the application
data offset or the length of the TCP/IP/Ether header. The
application can put response data in a TX ring slot with
supplying the fd and offset fields. The latter can be
taken from the offset of a RX ring slot, because usually the
header length is the same (e.g., minimum headers length
plus TCP Timestamp).

We now describe what happens on packets received by
the NIC in more detail. For each packet, netmap allocates
an mbuf whose m_ext.ext_buf points a netmap packet
buffer. It then calls ifp->if_input(). To intercept the
data that are ready to be passed to the application, such
as an in-order TCP segment, the kernel has set a callback
using soupcall_set()when registering the socket to the



dtor. upcall mbuf status Example

3 3 app. readable In-order segments
3 7 consumed Ack segments
7 7 held by stack Out-of-order segments

Table 1: Relationship between mbuf status and occurance
of mbuf destructor and soupcall

stack port (Figure 1 line 12). Further, we set a destructor
callback to the mbuf before if_input(), whichmarks the
underlying netmap buffer on mbuf consumption. Using
these mechanisms together, we can identify what has
happened to the mbuf, as shown in Table 1.
Therefore, when returning from if_input(), the ker-

nel can identify whether the packet can be passed to the
application (app. readable in the table) or not. The netmap
context processes all the receiving packets and sets the
ready buffers to the stack port RX ring. The other packet
buffers are either discarded (will be recycled) or held by
the kernel (swapped out of the NIC RX ring).

Connections terminated are indicated by a zero-length
buffers, similar to zero-length read(). Unlike Linux,
FreeBSD does not attach mbuf that contains a FIN TCP
segment without data to the receive queue. Therefore, the
socket upcalls triggered by such an mbuf observe nothing
at the queue. However, when returning from if_input(),
we would like to know mbuf or its underlying buffer that
has caused socket closure,
This prevents the netmap from identifying whether

the mbuf has been just consumed (e.g., pure ack packets
that do not need to deliver the corresponding buffers to
the client) or has triggered important event (e.g., FIN
packets that need to deliver the corresponding buffers to
the client to indicate zero-length buffer. Thus, we leverage
per-CPU binary flag. They are always cleared before
if_input() and the socket upcall with no available buffer
sets them. After returning from if_input(), netmap
makes a decision to deliver the buffer to the client based
on this flag.
Transmissions are processed in a similar way to re-

ceiving packets. The poll backend of the stack port
sosend()s a buffer pointed by each slot of the TX ring.
Netmap intercepts if_transmit(), and identifies mbufs
that come from the netmap txsync context (i.e., from that
sosend()) and those that come from the other contexts
(e.g., ARP and pure ack packets). For the former, netmap
copies packet headers in the mbuf to the headroom of
the associated netmap buffer (provided by the clinet with
offset field of the slot) if the length of the headroom
and total length of the packet headers match. Otherwise
it re-constructs the packet in the netmap buffer causing
payload data copy. For the latter, netmap puts the packet
in the host ring of the NIC port. netmap identifies mbuf’s

context without relying on mbuf destructor, because mbuf
is allocated inside sosend().

3 Persistent Memory Support

Netmap uses regions of memory, shared between the
kernel and userspace applications, to contain both its
abstract data structures (netmap rings) and packet buffers.
Packet buffers are also shared with networking hardware,
allowing for zero-copy TX and RX operations.
Several memory regions may be defined and netmap

applications may bind many ports to the same region (to
support, e.g, zero-copy bridging) or to different regions
(e.g., to enforce isolation among containers/VMs attached
to distinct ports of a VALE switch).
In the legacy implementation, the memory supporting

each region is allocated by the netmap module inside the
kernel (in small clusters, using conrigmalloc()) and
later mmap()ed by applications into their own address
space. Recently we have also introduced the possibility
of reverting this process: netmap applications may do
a generic mmap() and pass the resulting address and
size to netmap. Netmap will then use vm_map_*() to
obtain the underlying pages and use them to support the
shared region. In this way, PM can be easily supported:
applications should allocate a file in PM-backedfile system,
mmap() it and then tell netmap to use the corresponding
physical memory. Using Linux’s DAX-like feature that is
expected to be implemented in FreeBSD, this will also
bypass the buffer cache, giving a direct path from network
cards to PM. Importantly, given the same file, netmap
will deterministically allocate the same data structures
and buffers in it, thus retrieving the persistent state after a
crash/reboot.

4 Performance

We benchmark performance of PASTE using a pair of the
machines connected back-to-back. The server machine is
equipped with Intel Xeon Silver 4110 CPU clocked at 2.1
Ghz, whereas the client is equipped with Xeon E5-2690v4
clocked at 2.60 GHz. Figure2 shows throughput (bars) and
latency (numbers on top of bars) with and without PASTE.
The client runs wrk HTTP benchmark tool to generate
RPC-like workload in which each request retrieves a 64B
message over one or more persistent TCP connections. In
a single connection case, the performance does not differ
much, but we observe much higher throughput and lower
latency in the presence of concurrent TCP connections.



1 conn.
1 core

50 conn.
1 core

50 conn.
4 core

100 conn.
1 core

100 conn.
4 core

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 [1

K 
tra

ns
/s

]

34.2632.27

225.98

119.28
7370

242.73

448.25

231.62
136450

460.19

Number on each bar indicates mean latency (round trip) in us

64B RPC-like workload

FreeBSD
PASTE

Figure 2: Throughput over concurrent TCP connections.

5 Ongoing Work

As shown in the graph, multi-core scalability is not high
with PASTE in FreeBSD. Since the trend is same in
the baseline, the reason seems to stem from FreeBSD
TCP/IP and/or socket API implementation. Further, overall
performance is lower than Linux at both baseline and
PASTE (Linux performance can be found in the link at the
end of this paper). We are currently working to address
these issues.

6 Conclusion and Availability

PASTE is a network stack that integrates NVMM for
efficient networked storage systems; [1] contains many
more details and results. PASTE supports Linux (4.6
and higher) and FreeBSD (13.0-CURRENT) without
kernel modifications. It is under active development; see
https://micchie.github.io/paste/.

References
[1] M. Honda, G. Lettieri, L. Eggert, and D. Santry. “PASTE: A

Network Programming Interface for Non-Volatile Main Memory”.
Proc. USENIX NSDI. 2018.

https://micchie.github.io/paste/

	Overview
	Kernel TCP/IP support
	Persistent Memory Support
	Performance
	Ongoing Work
	Conclusion and Availability
	References

