
powerpc64 architecture
support in FreeBSD ports
Piotr Kubaj, Bsc

1. Abstract

IBM POWER processors are 64-bit CPU’s

designed primarily for server market. With

POWER9, there has been renewed interest in

them, due to the use of open-source firmware and

focus on security and control of the hardware.

There are also new desktop boards with

POWER9. Because of that, support for them has

been recently greatly improved in FreeBSD with

increased driver compatibility and more 3rd party

software having available. For my project, I build

the whole ports tree using Poudriere and fix the

compilation errors I meet. In this paper, I specify

challenges met during porting software to work

on POWER processors on FreeBSD and show

how most problems can be solved. FreeBSD on

POWER architecture runs in big-endian variant

only and uses old toolchain – with GCC 4.2 and

binutils 2.17. This is why many problems are

related to fixing bugs in big-endian variants of

code and solving issues related to the old

toolchain that the operating system uses.

Keywords: freebsd, powerpc64, ibm power,

ports, endianness, big endian, little endian.

2. Introduction

2.1. POWER architecture

This paper describes the effort for running

FreeBSD ports on powerpc64 architecture. IBM

POWER are 64-bit RISC processors designed

specifically for the server market, although there

are also boards for desktops and workstations

using those processors.

Before POWER9, last POWER processors

released for desktop computers, were PowerPC

970MP (based on POWER4) available in Apple

PowerMacs G5.1

With the release of POWER9, there appeared new

desktop computers with POWER processors,

making this architecture again interesting for

desktop users.2

IBM also made the firmware fully free and open

source, making this platform owner-controllable,

in contrary to other CPU vendors. This aspect

makes it more appealing to some users than its

competitors.3

2.2. Endianness

Endianness is the order in which bytes are read in

larger numerical values.

In big-endian architectures, the most significant

byte is stored the first (has the lowest address).

This is similar to the order used commonly by

people.

Little-endian architectures are the opposite. The

first number is the least significant byte. The most

significant byte is the last one in a given number

and has the highest addres. This is in contrary to

number ordering used in everyday life.4

POWER8 and POWER9 processors are bi-endian

– they can run in both modes. However, older

POWER CPU’s, like PowerPC used in Apple

Macintoshes, can only run in big-endian mode

(there are some older POWER CPU’s able to run

little-endian mode but they are not common).

Because of that, FreeBSD currently only supports

big-endian mode. It is also important that some

buses may be little-endian, even though the CPU

is big-endian – e.g. PCI bus. That means device

drivers need to be endianness-aware to work with

both little-endian and big-endian processors.

AMD64 architecture is little-endian only. This

causes more problems, because some applications

are not properly tested on big-endian

architectures.

Some examples of how endianness works in

practice are below. They come from the hexdump

of /bin/sh on amd64 and powerpc64.

0x7f454c46 is the magic number of ELF format

(marked as yellow in the Figure 1) (0x7f followed

by ELF in ASCII). In little-endian variant the

values are reverted (offset 0x00). 5

After the magic number and the number telling

whether the architecture is 32-bit or 64-bit,

follows the number which says whether the given

architecture is little- or big-endian (1 meaning

little-, 2 meaning big-, marked in blue).6

Then, in offset 0x20, there is a value which keeps

the address of program header table. In 64-bit

architectures, it is at offset 0x40 (marked in red).

FreeBSD gained support for POWER9 and the

previous POWER8 in 12.0-RELEASE.7

3. Purpose of this work

My goal is to make powerpc64 platform equal to

amd64 in terms of software support. This includes

having usual desktop-class software like web

browsers or desktop environments available. It

also includes having server-class software like

database servers.

4. Used hardware and methods

All tests were carried out using Talos Lite board

with 4 core IBM POWER9 processor and 64GB

RAM.

I used FreeBSD 12.0-RELEASE system with

manually merged patches related to POWER from

CURRENT branch and ran bulk builds of the

whole ports tree using Poudriere.

This screenshot shows the frontend of Poudriere

accessible via web browser. I am able to easily

see which ports fail to build and which ports are

set not to build. It is also possible to browse

specific compilation logs.

That allowed me to identify existing problems, fix

them one by one, then launch next Poudriere run.

5. Results

Summary of identified problems

There are three main reasons why powerpc64

support in ports tree needs more work:

Figure 2: Screenshot of Poudriere web frontend

Figure 1: Screenshot of hexdump /bin/sh from little-endian
(upperside) and big-endian (downside)

1. powerpc64 is big-endian on FreeBSD,

while all Tier 1 architectures are little-

endian.

2. powerpc64 uses (as do all other big-

endian architectures on FreeBSD)

outdated toolchain in the base system.

The default compiler is GCC 4.2.

Binutils 2.17 is also used.

3. FreeBSD uses powerpc64 name for

64-bit POWER port, but Linux uses

ppc64 name.

1. Endianness problem is cultural and social.

The most popular and widely available

architectures, amd64 and arm, are

little-endian. Developers often do not

write software with endianness

compatibility in mind.

FreeBSD/powerpc64 little-endian port is

in planning, but this is out-of-scope for

this article. However, this will not solve

all the problems, because:

a) As a general rule, POWER

processors older than POWER8

can only run big-endian (there are

exceptions to that).

b) Some people may prefer big-

endian for various reasons.

c) That would only solve

powerpc64’s problems, other big-

endian architectures will be left

with the same problem.

d) Creating powerpc64le port will

divide already small community of

FreeBSD/powerpc* users to two

groups – big-endian (powerpc,

powerpc64 and powerpcspe) and

little-endian (powerpc64le).

Endianness issues cause programs written for

little-endian architectures to require byte-

swapping functions. Common issues for little-

endian-only software are mixed colors in graphic

applications, because the hexadecimal value used

for a given color is different when read in big-

endian mode.

Example of such function is given below:

static inline int16_t

ORCT_Swapi16(int16_t x)

{

return

static_cast<uint16_t>((x << 8)

| (x >> 8));

}

This code makes byte ordered in little-endian

mode to be swapped to big-endian mode.

Unfortunately, the only solution to this problem is

a political one – exposing big-endian architectures

more and raise awareness that FreeBSD works on

many different architectures. This is also

troublesome for GNU/Linux ppc64 users and

patches for many ports can be adapted to

FreeBSD from GNU/Linux. There could also be a

little-endian POWER architecture port of

FreeBSD, but that would divide the (already

small) FreeBSD community of POWER-users.

2. Old toolchain is a technical problem and is

specific to FreeBSD.

When FreeBSD migrated from GNU toolchain to

LLVM, it started with i386 and amd64

architectures. Soon after, arm platforms followed.

This incidentally makes all little-endian

architectures use LLVM.

However, all big-endian architectures are left with

GCC 4.2 and Binutils 2.17.

The most common issues resulting from using

outdated toolchain are:

a) plenty of software nowadays require

C11 or C++11 compatibility. Because

LLVM on all supported FreeBSD

releases supports both, there are

hundreds of example where the

necessary USES=compiler is not put

to given port’s Makefile.

b) when the port defines

USES=compiler properly, but its

library dependency does not, this

creates a linking issue. This happens

because the port uses new GCC (and

its new ABI), but the linked library is

built with base GCC (and old GCC

ABI). This problem requires adding

USES=compiler to the library

dependency, even though it compiles

with base GCC. Example of such

linking error:

/usr/local/lib/

libIlmThread.sodefined

reference t to

`std::__cxx11::basic_string

stream<char,

std::char_traits<char>,

std::allocator<char>

>::basic_stringstream(std::_

Ios_Openmode)@GLIBCXX_3.4.21

'

c) sometimes a LLVM-specific

CXXFLAGS is put to Makefile. GCC

in such situation can’t compile such

software and throws error.

The most prominent error is:

CXXFLAGS+= -Wno-c++11-

narrowing

In above case, it is usually enough to

instead force compilation in c++98 mode

– LLVM compiles by default in c++11.

This can be achieved by the following

directive:

USE_CXXSTD= c++98

d) a common error in software is

redefining typedefs. This happens with

code in example:

typedef struct _Example {

int a;

char b;

} Example;

typedef struct _Example

Example;

Code from the first fragment is put to a

file that is included in another file, which

has code from the former fragment.

In this case, it is enough to remove the

typedef from the former fragment.

Alternatively, one could use appropriate

USES directive to force GCC from ports

to be used. New GCC allows typedefs to

be redefined

The issue of outdated toolchain can be

worked around by using newer GNU

compiler from ports tree, but such

workaround creates other issues:

e) programs do not respect CXXFLAGS,

linking to base libstdc++, instead of

libstdc++ from ports’ GCC,

Example for devel/protobuf:

--- src/Makefile.am.bak

2018-10-27

21:56:16.784704000 +0200

+++ src/Makefile.am

2018-10-27

22:01:47.564751000 +0200

@@ -518,7 +518,7 @@

 # to build the js_embed

binary using $

(CXX_FOR_BUILD) so that it

is executable

 # on the build machine in a

cross-compilation setup.

 js_embed$(EXEEXT): $

(srcdir)/google/protobuf/com

piler/js/embed.cc

- $(CXX_FOR_BUILD) -o

$@ $<

+ $(CXX_FOR_BUILD) $

{CXXFLAGS} -o $@ $<

js_well_known_types_sources

= \

google/protobuf/compiler/js/

well_known_types/any.js

\

google/protobuf/compiler/js/

well_known_types/struct.js

\

This specific issue alone made protobuf

fail to build, resulting in over 400 ports to

be skipped.

f) software developers believe that using

FreeBSD implies having libc++ in

base and add -stdlib=libc++ to

CXXFLAGS. This is not necessary,

Clang uses libc++ by default and

adding it breaks build with GCC.

g) GCC and LLVM include by default

slightly different set of headers,

resulting in some headers needed to be

included manually when using GCC.

The most common example is using

sys/types.h, which contains

commonly used typedefs (like uint).

3. There is also a third problem, which is that

Linux uses ppc and ppc64 names for

POWER architecture ports, while

FreeBSD uses powerpc, powerpc64 and

powerpcspe names. This issue is also

present on amd64 and i386 architectures

and is easily fixed:

ANT_ARCH= $

{ARCH:S/amd64/x86-64/:S/i386

/x86/:S/powerpc64/ppc64/}

6. Conclusions

Switching to LLVM in base will allow focus only

on architecture-related differences with amd64.

This is already work-in-progress by some

members of the community.8 Having modern

toolchain with C++17 support in FreeBSD base

will fix most toolchain issues in ports.

With POWER9 available, there is a renewed

interest in big-endian systems. Linux users port

more and more software to big-endian

architectures and FreeBSD/powerpc* will also be

able to benefit from that.

7. References

1. Forever Mac, https://web.archive.org/web/

20120930005749/http://www.forevermac.

com/2005/10/apple-power-macintosh-g5-

quad-core-2-5-ghz/, access from

22.02.2019,

2. Raptor Computing Systems,

https://www.raptorcs.com/, access from

22.02.2019,

3. OpenPOWER Foundation,

https://github.com/openbmc and

https://github.com/open-power, access

from 22.02.2019,

4. Mozilla, https://developer.mozilla.org/en-

US/docs/Glossary/Endianness, access

from 22.02.2019,

5. Unix System Laboratories,

http://www.skyfree.org/linux/references/E

LF_Format.pdf, page 1-5, access from

23.02.2019,

6. Unix System Laboratories,

http://www.skyfree.org/linux/references/E

LF_Format.pdf page 1-6 access from

23.02.2019,

7. The FreeBSD Documentation Project,

https://www.freebsd.org/releases/12.0R/rel

notes.html#hardware-support, access from

22.02.2019,

8. Alfredo Dal Ava, https://wiki.freebsd.org/

powerpc/llvm-elfv2, access from

23.02.2019.

