
Yet Another Container Migration on FreeBSD

Yuhei Takagawa
Future University Hakodate

Katsuya Matsubara
Future University Hakodate

Abstract
The container-based virtualization, that multiplexes and iso-
lates computing resource and name space which operating
system (OS) provides for each process group of application,
has been recently attracted. We focus on container migra-
tion among machines since it is one of the most important
technology for realizing load balancing and increasing avail-
ability in cloud computing, that is a major application of the
virtualization.

Although FreeBSD VPS has already implemented one
kind of migratable containers in FreeBSD, it is not enough
in terms of resource limitation, compared to Linux one. This
paper shows a novel implementation that how resource lim-
itation and isolation close to that of Linux can be realized
for FreeBSD containers. We also explain how processes,
which could have sessions of file open and network connec-
tion, running in a FreeBSD container can be checkpointed
and then they can be restored in another container. This im-
plementation bases on runC which is one of standard con-
tainer runtime and CRIU which is a major process migration
tool in Linux.

1 Introduction

The container-based virtualization, that multiplexes and iso-
lates computing resource and name space which operating
system (OS) provides for each process group of application,
has been recently attracted, such as Docker [2], LXC [3], and
FreeBSD Jail [1].

We focus on container migration since it is one of the
most important technology for realizing load balancing and
increasing availability in cloud computing, that is a major
application of the virtualization. Especially We claim that
implementing containers and its migration along the stan-
dard interfaces and protocols could promote interoperability
with recent containerizing services such as Docker and Ku-
bernetes. There have already presented some of study and
work related to container on FreeBSD. The Docker-FreeBSD
port [4] exists as a native port of the Docker v1 engine with
Jail and zfs, however, unfortunately it may have become a
fossile since it has not been updated since 2015. FreeBSD
VPS(Virtual Private System) [6] realizes migratable contain-
ers isolated by Jail. Unfortunately, the containers lacks of

limiting resources such as CPU and memory usage, and the
system has no compatible interfaces to cooperate with the
major containerizing services.

In this paper, we propose a novel implementation of con-
tainers which limit and isolate resources, close to that of
Linux, and container migration functionality with the em-
phasis on cooperating the defact-standard containerizing ser-
vices such as the latest Docker and Kubernetes. We have
ported two of the standard software components for con-
tainer system implementation in Linux, runC and CRIU [5,7]
(Checkpointing and Restoring in User-space), to FreeBSD:
The revised runC not only can isolate but also can limit re-
souces. The ported CRIU supports processes natively run-
ning on FreeBSD.

The following sections shows resouce limit on FreeBSD
realize in runC, then explains how running processes in a
container, which could have sessions of file open and net-
work connection, can be captured with the CRIU-defined
representation and then they restore on another OS with sus-
taining their sessions. Finally, we also show result of a pre-
liminary evaluation of the implementation.

2 Limiting Resource Usage in a FreeBSD
Container

Fortunately, an implementation of runC for FreeBSD has ex-
isted, which was developed by Hongjiang Zhang [8]. Espe-
cially it is ideal for our purpose that it has compatible with
Linux one on the configuration by config.json file. How-
ever, it has been only implemented the resource isolation,
not the reource limitation. So we has realized additional
functionality of the resource limitation in the FreeBSD runC
implemetation.

Corresponding with Linux namespace, FreeBSD jail can
be used to realize to isolate resources for each container.
Table 1 shows counterparts for functionalities of the re-
source isolation in Linux and FreeBSD. Althrough almost
all resources besides PID and User can be isolated also in
FreeBSD, jail does not permit to assign PID 1 to multiple
processes simultaneously in a system. And it is impossible
to isolate set of users and groups identification for each con-
tainer in FreeBSD. Note that jail requires to execute the jail
command at first, and then to spawn the target process as



Table 1: Isolated resources by Linux namespace and
FreeBSD jail

Isolated Linux FreeBSDresource
IPC

namespace
jail

Mount
UTS
Network
cgroups
PID jail (limited support)User

Table 2: Counterparts of Linux’s resource controls in
FreeBSD

Linux cgroups Counterpart in FreeBSD
memory RCTL memoryuse
cpushare (N/A)
cpuquota RCTL pcpu (convert)
hugepage superpages (limited support)
devices devfs
cpuset cpuset
cpuperiod RCTL cputime

a child of the jail command process because it disallows to
control resources for other processes. The runC implemen-
tation in FreeBSD follows the flow.

The specification of the resource usage control in runC fol-
lows the OCI (Open Containers Initiative) standard, which
has been based on Linux cgroups’ functionalities. FreeBSD
provides similar functionalites for the resource usage control
via several frameworks such as jail, RACCT/RCTL and so
on. Table.2 shows some of resources, which are especially
supported in Kubernetes, and control framework for each re-
source in Linux and FreeBSD. We have replacing almost all
implementation of the resource usage control based on Linux
cgroup in runC with the FreeBSD counterparts. Unfortu-
nately, some of limitations remain in our runC implementa-
tion; cpushare and hugepage unsupported.

By contrast, FreeBSD RCTL allows to specify an action
when amount of resource usage reaches the limit although
Linux cgroups always exercises ’deny’. Our FreeBSD runC
aligns the behavior to Linux one.

To pass a value of cpuperiod in Linux cgroups into
cputime in FreeBSD RCTL, it must require to convert the
unit with Eq.(1).

cputime =
cpuperiod
1000000

(1)

Also Eq.(2) shows a conversion from cpuquota of Linux
cgroups to pcpu of FreeBSD RCTL for specifying rate of
CPU usage.

pcpu =
cpuquota
cpuperiod

×100 (2)

Linux cgroups uses major and minor numbers to identify
devices, however, name must be used to specify devices in
FreeBSD. Unfortunately, a device could be assigned with
different numbers in Linux and FreeBSD althrough it has the
same name. We added a conversion of identification between
device numbers and names only for some of special device;
null and zero devices, tty, urandom, random, console, pts,
and so on.

3 Checkpoinging and Restoring a FreeBSD
container in User-space

CRIU is enabled to migrate processes by getting and restor-
ing the process state. Our target process is Linux ELF on
FreeBSD running by Linux emulation (Linuxulator). The
process state is cpu register and memory basically. In addi-
tion, there are opened file state, network state and etc.. In this
paper, we subscribe basic process migration, opened files mi-
gration and network state.

3.1 Migrating a Process
Normally, the process migration requires register informa-
tion and memory. The memory data is the same presentation
if a process is running on the same architecture. Also, most
recent OSes allocate memory to enhance security with ad-
dress space layout randomization (ASLR). On an OS with
ASLR enabled, memory is allocated to process randomly so
memory layout is different always. Although FreeBSD does
not yet implement ASLR, we will make it possible to change
the memory layout corresponding to ASLR. We reallocate
memory layout to convert memory layout.

The register information can be gotten and set by the
ptrace system call. Note that the set of segment registers
use as it is. Also, the memory can be gotten by the read
system call from mem file of procfs, set by the write system
call from memory file of procfs. Before memory data is set,
memory layout is reallocated with the mmap system call and
the unmmap system call.

For process state restoration, the process is set traceme
option of ptrace system call, run with execvp system call.
The important thing for Linuxulator is that you need to set
register information and memory after the first instruction of
the main function is executed.

3.2 Migrating State of Opened Files
We get and restore the opened file state. The opened file state
include file path, file descriptor number, file offset, file mode,
and file flags. On Linux, we can get the opened file state from
fdinfo directory of procfs. However, FreeBSD doesn’t have
fdinfo directory. We can get only the process’s file informa-
tion via fd directory of devfs. Therefore, we adopt libprocstat
library to get another process’s opened file state by __sysctl
system call.







time it takes to start and restore container with runC 50 times.
The target process of this test is opened file but don’t have
TCP connection. The result shows in Fig.5. The horizontal
line shows time taken. The time of "STANDARD" is taken
start container with runC which no resource limitation func-
tion and migration function. The time of "START" and "RE-
STORE" is taken start and restore with runC which have re-
source limitation function and migration function. The "cre-
ate", "start", "restore" shows took to create container, start
target process, restore target process. In the case the "RE-
STORE", the "start" presents the time to start CRIU.

In the starting, creating container time increase 1.46 ms
than the normal starting, this is 1.23% of total time of the
normal starting. In the restoring, creating container time in-
crease 2.29 ms than the normal starting, this is 1.93% of total
time of the normal starting. In addition, the standard devia-
tion of the time until the target process starts execution is
2.62 ms in the case of the resource limiting function, 3.43 ms
in the case of the resource limiting function and the container
restoring function, that is, The overhead is smaller than that
of the shake, and it can be said that it can be extended with
small overhead.

5 Conclusion

We proposed how resources consumed by processes running
in a container can be limited with the runC runtime. The re-
vised runC uses the RCTL command to set a limit on mem-
ory and cpu usage for each container. Some parameters of
cpu limit specified in runC config should be converted since
they have been defined among the specification of Linux
cgroups.

We also showed how state of a process running on
FreeBSD can be checkpointed and restored from user-space
with the CRIU tool. The ptrace syscall in FreeBSD can be
used enough to read and write values of cpu registers for
each process. Content of process memory can be dumped
and restored through the procfs mem entry. In FreeBSD,
state of files opened by the target process can be captured
from the devfs fd entry. Then restoring the file state can be
realized by injecting code, which opens the files and invokes
the lseek syscall to restore file offset of the each file, into the
destination process. In order to dump and restore TCP con-
nections held by a migrating process, the current FreeBSD
kernel must be modified to allow to access the mbuf buffer
and the tcpcb structure data from user-space, moreover, ad-
just the window size at the restore.

The remaining issue is to support dynamically changing
setting of resouce limit and isolation. In Linux, CRIU can
capture and restore the current cgroup setting for the target
container. In contrast, in our current implementation, runC
creates a new destination container with the config file of the
source container, instead of capturing state of resource limit
and isolation.

Furthermore we would like to realize container migration
between FreeBSD and Linux with cooperating the Kuber-
netes container orchestration.

References

[1] Poul henning Kamp and Robert N. M. Watson. Jails:
Confining the omnipotent root. In In Proc. 2nd Intl.
SANE Conference, 2000.

[2] Docker Inc. The Docker Containerization Platform.
https://www.docker.com/ . Accessed: 2019-01-24.

[3] LinuxContainers.org. LinuxContainers.org. https://
linuxcontainers.org . Accessed: 2019-01-30.

[4] MateuszPiotrowski. Docker on FreeBSD. https://
wiki.freebsd.org/Docker . Accessed: 2019-01-30.

[5] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin.
Containers checkpointing and live migration. In Pro-
ceedings of the Linux Symposium 2008, volume 2 of OLS
’08, pages 85–90, 2008.

[6] Klaus P. Ohrhallinger. Virtual Private System for
FreeBSD. 2010.

[7] CRIU Project. Criu main page. https://criu.org/ .
Accessed: 2019-01-30.

[8] Hongjiang Zhang. Implement FreeBSD runc with
the help of Jail. https://lists.freebsd.org/
pipermail/freebsd-jail/2017-July/003400.
html . Accessed: 2019-01-30.




