
BSD Unix Solutions in the Australian NFP/NGO Health Sector

Jason Tubnor – ICT Senior Security Lead

Latrobe Community Health Service, Victoria, Australia
jason.tubnor@lchs.com.au, jason@tubnor.net

Abstract
Latrobe Community Health Service (LCHS) is a
Not for Profit (NFP)/Non-Government
Organisation (NGO) in Victoria, Australia. By
2018, the organisation had grown to 51 offices
across the State of Victoria with over 1,000
employees. All LCHS infrastructure is designed
and managed in-house without the use of large-
scale cloud infrastructure.
 Since 2015, BSD Unix has been used for various
workloads within the organisation, with
application instances interchanging between BSD
distributions where it was deemed that one type
was stronger than another at specific roles in the
LCHS environment. LCHS is operating system
distribution and technology-agnostic and prefer
both FreeBSD and OpenBSD where either one
and/or its associated base tools are most suitable.
 This paper outlines the various design
considerations and configurations of OpenBSD
and FreeBSD in multiple roles in our
organisation.

1 Introduction

In 2015, Latrobe Community Health Service
(LCHS) started to look towards open source to
solve problems that couldn’t be easily solved with
available Microsoft technology or at a reasonable
price point. The Information, Communication
Technology (ICT) team were tasked to think
outside the box and come up with solutions to
these problems.
 This led to some technology decisions that when
reflected upon, were good for the company’s long-
term goals.
 While there are more features of the different
BSDs in use at LCHS, this paper will focus on the
high level of the following technology
implementation:

x OpenBSD PF(4) and traffic queueing.
x OpenBSD ripd(4) dynamic routing,

network design considerations and scaling
it across sites with multi-vendor
implementations of RIPv2.

x Design and deployment of a commodity,
1U appliance using FreeBSD, OpenZFS
and bhyve(8) as a host.

x A virtualized OpenBSD guest to provide
branch offices network infrastructure and
access to head office corporate services,
using simple and cheaply available layer 3
Internet services.

x Migrating the marketing USB archive
drive to a 36TB raw storage FreeBSD
OpenZFS server, replicating data sets
across 3 sites.

x Using tools such as setfib(1) in FreeBSD
or rdomain/rtable(4) in OpenBSD to
connect a host to a separate storage
network.

2 OpenBSD ripd(8) and pf(4)

A strategic change of direction for the organisation
occurred in 2015 and from an ICT perspective, it
meant a move away from being solely a Windows
shop. Network management was being brought
back in-house from an outsourcing provider and a
local Internet Service Provider was engaged to
provide the organisation a private, layer 3network
between sites using whatever technology was
available to provide the bandwidth required.
Initially this included eight sites that needed to be
interconnected with around 10/10Mb symmetrical
connections in a hub and spoke configuration. Due
to the size of the network and the unknown state of
the topology because of outsourced management,
original agreements stated that routing would be
managed by the ISP using static routing that was
then distributed in their core network via BGP.
 Once it became apparent that this was not going to
be scalable if the organisation ever grew, a plan
was required to allow for management and
distribution of routes across the entire network.
Due to the configuration of our ISPs network, BGP
was ruled out. The organisation was also swapping
out aged Cisco Catalyst switches for Brocade ICX
switches, limiting the use of other protocols that
could be used for route distribution.

 The network design contained an OpenBSD
firewall for the Internet gateway. Using the
excellent documentation provided by the project
located in the base install, assisted in making the
most appropriate decision. As most are aware,
OpenBGPD is a major sub-project within the
OpenBSD base system but the BGP it offered was
not useable due to what was mentioned above.
However, another routing protocol that was part of
the project at the time and still being maintained is
ripd(8). While this protocol is old and there are
many more modern and preferable routing
protocols, this would be enough for the
organisation based on the new network topology
and being interoperable between all software and
hardware that will make up the network refresh.
 As the connection and configuration of the
network took place, work went into the design and
build of the OpenBSD Internet gateway. Key
components of the gateway simply consisted of
network components that were found in the base
operating system, such as ripd(8) using version 2
only of the protocol and pf(4). Initially, the
organisation size only dictated the configuration of
the pf(4) rules to be block all/explicitly permit and
keep the traffic as first in, first out. As the
organisations requirement for Internet connectivity
grew and a limited budget prevented an increase in
bandwidth, creativity was required to design and
build queues to manage end users’ consumption,
ensuring all users had a good experience.

2.1 ripd(8)

ripd(8) configuration in OpenBSD is very simple
and only requires the daemon to be enabled
(rcctl enable ripd) after the modification of
the excellent example ripd.conf(5) that is located
in /etc/examples/ and copied to /etc.
 A simple example of ripd.conf(5) when running
on a firewall/route of last resort without any
authentication is (bge1 being the external
interface):

fib-update yes
redistribute default
split-horizon poisoned
triggered-updates yes

interface bge0 {
}

interface bge1 {

passive
}

The ripd(8) routing protocol implementation was
successful, allowing the firewall to participate in
announcements and broadcasts. During
implementation, use of the ripctl(8) tool allowed
for debugging and rectification of the ripd(8)
configuration. It provided the ability to determine
if neighbours are connected and active as well as
what routes the daemon was receiving.
 Stability of ripd(8) was an issue in OpenBSD 5.8
with the ripd(8) daemon consuming RAM over
time and not releasing it even though the network
wasn’t growing in size. This would cause the host
to remain up but the RIPv2 routing daemon would
crash, losing routes to the rest of the network. A
restart of the ripd(8) daemon would be required to
have the host operational again and it was hard to
pinpoint what was the problem initially. More
recent versions of OpenBSD appear to have
corrected these issues.
 One of the newer features that was tested but not
yet used in production is the ability to launch
multiple ripd(8) instances to run in other
rdomain(4)s without one knowing about the other.
This is good for where an OpenBSD router is
multi-tenanted with isolated network traffic.
 One feature request for ripd(8) would be to have
the ability to reload the configuration file or
perform other operations without having to restart
the daemon (similar to iked(8) using ikectl(8)) to
avoid causing an interruption to the routed traffic.

2.2 pf(4) and traffic queueing

Out of the box, pf(4) on OpenBSD provides an
excellent firewall solution for the front of a private
network. A clean room approach was taken in the
design of the rules that were required for internal
applications to work.
 By using a default block all approach in the rule
set, a couple of applications that were affected by
missing rules failed, however, these were fixed,
and appropriate documentation was created for
these applications as well as their networking
requirements.

 Over the next 6 months, network issues started to
appear with DNS timeouts and other applications
failing that were latency sensitive. An
investigation uncovered that the internal userbase
were consuming all the inbound bandwidth of the
public Internet connection. Bandwidth is expensive
in Australia and it is not as simple as turning a
knob to increase bandwidth.
 The pf.conf(5) rule set was reviewed to break
down the different protocols and sort into time
sensitive, low bandwidth to low priority, high
bandwidth.
 What is misunderstood is that you can control
inbound traffic coming into your network, even if
access to the upstream device is unavailable –
typically only outbound traffic can be controlled.
By setting outbound queues on the internal
interface, it effectively rate limits the traffic
heading to end-users. In turn, this holds back the
ACK for TCP traffic or the data stream for UDP.
 Both pf(4) and its queueing algorithm work
exceptionally well, with only minor rule changes
when a new application comes along or in the case
of queueing, when bandwidth is eventually
increased.
 Since 2018, the organisation increased the office
count that used this firewall from 8 to 24 and
bandwidth to 100/100Mb symmetrical with a
significant increase of devices utilising this
firewall as their primary Internet gateway. While
different protocols NAT to individual IP addresses,
the default state limits in pf(4) became an issue.
The parameter set limit states was raised from the
default 10,000 to 30,000 without any notable
impact to RAM. However, since OpenBSD 6.4,
the default state limit has been increased to
100,000 states1.
 On average, an observed 25MB of RAM is
consumed with 12% of CPU utilisation on a single
core for pf(4) under peak user load.

1 henning@ increased the default state table size from 10,000
to 100,000
https://cvsweb.openbsd.org/src/sys/net/pfvar.h?rev=1.480&co
ntent-type=text/x-cvsweb-markup

3 FreeBSD bhyve(8) appliance

In 2017 the organisation was awarded a second
round of contracts to provide services for the
National Disability Insurance Scheme (NDIS), an
Australian Government initiative.
 The ICT team were tasked to come up with a
solution that would provide network and site
server facilities to satellite offices at a cost-
effective rate. After a significant amount of
research to come up with suitable hardware that
could withstand hostile environments (high
temperatures/dust), the decision was made to use
FreeBSD 11.0 with bhyve(8) and OpenZFS to
build a custom hypervisor instead of using
VMWare’s ESXi server, which was also trialled
during the proof of concept stage (PoC).
 In the first design of these hosts, a reliable
management tool that was easily used by team
members still didn’t exist and bhyve/UEFI was
still relatively new, making the project look rather
un-realistic from the start.
 The chyves bhyve management project was
evaluated and achieved 90% of requirements and
that was enough for the V1.0 of the device, further
iterations of the device could occur if better tools
came along.
 Installing chyves and modifying the management
shell scripts to work for more modern version of
OpenBSD was successful and a solid and reliable
platform was ready for use.
 In V2.0, the appliance moved to FreeBSD 11.1,
vm-bhyve replaced chyves and an all UEFI guest
configuration. This approach simplified the
number of datasets and the knowledge required to
manage guests at the console level.
 The V2.0 appliance then had acceptance of the
team, some team members were able to perform
zvol expansion for guests where required and
others could manage guest operating systems with
ease via a VNC console.

3.1 Storage and replication

OpenZFS allows for easy upgrades of guest
operating environments by providing simple
snapshots. The Copy on Write (COW) file system
provided by OpenZFS is superb in this scenario, if
guests don’t get shut down prior to snapshots,
rollbacks can occur to a previous running state
without an issue.

 Additional tools that were bundled into the build
to automate backups, snapshots and transfers were
zfsnap2 and zxfer. While simple in their nature,
they work well to ensure there is a consistent copy
of each guest that can be rolled out to new devices
in the event of a hardware failure of the production
device. These backups are replicated to build
servers around the state with hot spares of the
appliance ready to go so they can be remotely re-
imaged by the administration team and deployed
by onsite ICT technicians.
 Having guests imaged in the way mentioned
above allows deployment of new or replacement
devices within 15 minutes after power-on. Most of
the delay is due to network speed for replication.

3.2 Guest network security

To mitigate the risk of guests seeing data that they
are not entitled to on the wire, all VLANs were
configured at the host level to the physical
interface that either plugged into the switch or
Internet device. Each guest then had the required
interfaces presented to it and bridged to the
applicable VLAN at the point of presentation. This
avoided the need for configuration of VLANs
within the guest and reduced the complexity for
support staff.

4 OpenBSD VPN gateway

As part of the hypervisor appliance mentioned in
section 3 of this document, a key feature needed
was a feature rich router and firewall. OpenBSD
was already providing a solid foundation to work
off and was chosen for the task.
 In addition to the firewall and routing capabilities
of OpenBSD, the operating system also provided
OpenIKED (IKEv2) in the base system, providing
a simplistic and secure VPN tool to connect the
remote offices up with the rest of the network,
using a cheap and cost-effective public Internet
link (figure 1).
 Over the previous 18 months, different design
concepts and configurations of OpenIKED were
worked on to connect two medical centres to the
core network, this helped iron out the final design
for this virtual router.

 Firstly, an OpenBSD VPN terminator was
commissioned in the DMZ that end sites could
connect to, forming part of the core network
infrastructure. Setting this into a passive state and
using key based authentication with VPN end
points kept the configuration simple. Remote VPN
hosts would be active clients and perform the
connection to the main termination device.
 The rest of the configuration was the same for
both the main terminator and the clients. Each site
was designed to have at least 5 VLANs for various
tasks. The traffic then needed to be encapsulated,
encrypted and signed for transport. Once end-to-
end encryption was set up, a unicast virtual
network using two virtual adaptors across the
encapsulated link (using vxlan(4)) could be created
that then could then have ripd(8) overlayed,
managing the routes seen by either end.

Figure 1

4.1 ipcomp(4)

The initial designed used the IP Payload
Compression Protocol (ipcomp(4)) for all links to
keep consistency as some remote sites have poorly
performing ADSL connections providing as little
as 6,000/768Kbs asymmetrical throughput. While
this provided marginal improvements for these
ADSL sites, more and more payload traffic are
using encryption and/or transparent compression
techniques and has made this no longer a benefit.
 Before unwinding the use of ipcomp(4), kernel
crashes were being observed in the main
terminator that runs in the VMWare ESXi cluster
when a significant and consistent traffic load had
been passing through it. Further investigations
found that this was an ESXi issue as it could not be
replicated with bare metal hardware.

 Another regression was also discovered between
OpenBSD 6.3 and 6.4 that inadvertently forced the
removal of ipcomp(4) from all links so devices
could be upgraded to 6.4.

4.2 vxlan(4)

Configuring iked(8) to understand and handle
traffic for a significant number of VLANs across
all networks was not an option. A solution was
required that would allow for the use of ripd(8)
across the encrypted encapsulated link. OpenBSD
comes with various encapsulation or tunnelling
protocols such as gre(4), gif(4), etherip(4),
however, vxlan(4) was chosen as it was a modern
option and had scope for future expansion. As all
traffic between the iked(8) end-points was
encrypted, the vxlan(4) interface could be
configured as a /30 subnet at either end of the
tunnel to form a unicast network suitable for
ripd(8).
 By configuring ripd(8) on the vxlan(8) interface,
both neighbours could see each other and pass
their applicable routing tables.

4.3 pf(4) queues

While ipcomp(4) was deprecated, there was still a
need to manage traffic moving between the remote
and main networks.
 All traffic that passes over an iked(8) connection
moves through the enc(4) interface at either end.
This interface does not support queue-based
bandwidth control so traffic shaping cannot take
place. Using pf(4) tagging allows the control of
traffic flow between both end points but not the
various traffic that uses this ‘bridge’.
 Since vxlan(4) was being used for ripd(8) and to
route traffic between networks, pf(4) queuing was
enabled on this interface at either end to ensure
quality of service (QoS) was maintained for time
sensitive, low latency packets. During the
development and testing phase, it was found that
no distortion occurred to Cisco Call Manager
audio packets while the data links were under
heavy congestion.
 Two years on, queue and rule configurations
produced in the initial rollout are still providing
end-users with an excellent audio or video
experience when they are either using handsets for
regular voice calls or video conference units.

5 FreeBSD OpenZFS Storage Cluster

With the organisation growing rapidly over the last
three years, ICT have had to constrain the type of
data that utilised space on the flash storage array.
Expanding it in the short term was not a viable
option due to cost.
 This saw some users within the organisation
looking for options to store, low changing, static
media that was significant in size. Marketing fell
into this category due to the type of assets they
worked on but there just wasn’t the space for this
type of media. When it was discovered that they
were simply using a portable hard drive to store
these assets on, it forced action to provide a facility
for storage as well as the appropriate protection for
this sort of data.
 After discussions with vendors regarding the
requirements and financial constraints, a hardware
build was designed that was fully supported by
FreeBSD 11.1 and its implementation of
OpenZFS.
 The design was simple, and it didn’t need to be
included it into the backup cluster if there was
enough redundancy and protection built into the
solution. By utilising the DR storage WAN links
and other network links, a 3-node cluster was
designed and built across three sites (figure 2).

Figure 2

5.1 Storage

Deliberation occurred to determine if FreeNAS or
vanilla FreeBSD 11.1 should be used for the
project. As it was unknown how this storage would
be utilised outside of the immediate scope, it was
decided that FreeBSD would give greater
flexibility moving forward as well as being able to
customise it to meet the network and replication
requirements.
 The build consisted of Lenovo 2RU storage 3.5-
inch storage chassis, 64GB RAM, a single Xeon
CPU, 2 x 480GB high endurance SSD, 6 x 6TB
HDD and a 2x10Gb Intel SFP+ network card.
 The main storage was configured in a RAIDZ2
pool with 32GB of mirrored SLOG space
dedicated from the 480GB SSDs. Only 200GB
from the 480GB SSDs was given to the hosts
operating system to allow for wear caused by the
SLOG throughout the hosts life.
 The ZFS ARC was limited to 48GB to allow for a
minimal toolset to work correctly on the host and
not put pressure on the available memory or swap
if RAM was suddenly required.
 The pool was carved up into many datasets
depending on the work load and replication
requirements. Initially this was minimal in the
beginning, but it is now becoming more complex
though is still quite easy to manage.

5.2 Replication

As the datasets are needed in the 3 locations
without any special operations, zxfer was sufficient
in managing the transfer of datasets and their
associated zfs(8) properties. Data transfer was
performed over OpenSSH-portable from the ports
tree without any specific configuration except for
key based authentication. While there are options
and patches for tuning OpenSSH for large
workloads, there were no perceived benefits in
doing so for this use case.

 At times, users can dump in excess of 100GB of
files in a session. This does cause issues for us on
the slower MPLS link (Multi-site WAN in figure
2) and cause a backlog of expired datasets that
require removing. While not the most optimal
solution, sneaker net is currently the best way to
get the large dataset that is causing issues to the
third site. Mounting a zpool(8) that is located on a
portable hard disk, the dataset that needs to be
replicated is copied to it using zfs send/recv and
taken to the remote server by an ICT technician.
The dataset in question is then copied to the third
server, allowing for standard replication to resume
as well as dataset clean up.

5.3 Services

Initially, only smb connectivity was provided for
end users and smb used authentication from our
main Active Directory (AD) infrastructure.
 As time progressed, the internal mirror of
application files was growing rapidly so this saw a
jail serving out a mirror dataset via nginx be
implemented. This worked so well that since it
also contained the ISO files that were used for
guest builds on our VMWare ESXi infrastructure,
a read-only NFS share of the same dataset was
created and presented as a data store to ESXi.
 Eventually further storage was added to the main
production environment. Scratch space was needed
to move data around and to re-structure it. These
storage servers were able to provide temporary
iSCSI targets with zvols for storage presentation to
the ESXi hosts making it easy to give redundant
storage for vmdk moves.

6 Multiple routing tables

Without multiple routing tables, the replication
discussed in section 5.2 could not occur over the
DR storage WAN connection as the two hosts did
not share the same layer 2 (L2) network segment.
This is where the features of OpenBSD
rdomain/rtable(4) and FreeBSD setfib(1) become
essential in managing two isolated networks on the
same host.

 More than one routing table allows a system to
host multiple applications on the same host that the
attached networks or the applications are not aware
of the other. For example, a host could run two
vastly different web server instances for two
different groups on the same host and neither
group would know about the other instance except
for the system administrator. Both groups would
come in via two different network paths and their
traffic would never cross.
 This is what was used to connect hosts to the IP
storage network that needed to see storage across
multiple subnets (figure 2).
 Another aspect is that it allows for more than one
default router or route of last resort on a host so
depending on the use case, an application can use
the most optimal path.
 Using this type of feature in either operating
system is quite simplistic. In FreeBSD, invoking
setfib <table number> <command> will run a
command, launch a daemon or even adjust the
applicable routing on the table defined in <table
number>. OpenBSD has the feature built into route
but the network stack can be modified
independently through features in pf(4) and
ifconfig(8). OpenBSD ping(8) and ps(1) are also
both rdomain aware programs.
 Out of the box, no additional configuration is
required in OpenBSD, however FreeBSD requires
the /boot/loader.conf to contain net.fibs=”N” with
N being the number of tables your host needs.

7 Conclusion

A mix of BSD Unix variations have proven a
valuable and successful asset to the LCHS
organisation. The tools and technologies that are
developed and maintained by FreeBSD and
OpenBSD are on par with, or better than their
commercial counterparts. Overall, adopting BSD
has ensured that the technology managed within
the organisation assists in providing better delivery
of services for our clients.

