
X11 and Wayland

A tale of two implementations

1 / 20

Concepts
and Goals

What is hikari and what am I trying to achieve?

window manager / compositor

started 1.5 years ago

written from scratch

stacking / tiling hybrid approach inspired by cwm

tiling algorithm inspired by herbstluftwm

keyboard driven, for fast navigation

modal, inspired by vim

waste little screen space

allows to arbitrarily group windows

minimal dependencies

energy efficient

target FreeBSD

X11 and Wayland implementation

2 / 20

Concepts What is hikari and what am I trying to achieve?

X11 and Wayland

A tale of two implementations

3 / 20

Concepts
and Goals

What is hikari and what am I trying to achieve?

window manager / compositor

started 1.5 years ago

written from scratch

stacking / tiling hybrid approach inspired by cwm

tiling algorithm inspired by herbstluftwm

keyboard driven, for fast navigation

modal, inspired by vim

waste little screen space

allows to arbitrarily group windows

minimal dependencies

energy efficient

target FreeBSD

X11 and Wayland implementation

X Window System Architecture

4 / 20

X Window System Architecture

// TinyWM is written by Nick Welch <nick@incise.org> in 2005 & 2011.
//
// This software is in the public domain
// and is provided AS IS, with NO WARRANTY.
#include <X11/Xlib.h>

#define MAX(a, b) ((a) > (b) ? (a) : (b))

int main(void)
{
 Display * dpy;
 XWindowAttributes attr;
 XButtonEvent start;
 XEvent ev;

 if(!(dpy = XOpenDisplay(0x0))) return 1;

 XGrabKey(dpy, XKeysymToKeycode(dpy, XStringToKeysym("F1")), Mod1Mask,
 DefaultRootWindow(dpy), True, GrabModeAsync, GrabModeAsync);
 XGrabButton(dpy, 1, Mod1Mask, DefaultRootWindow(dpy), True,
 ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeAsync, None, None);
 XGrabButton(dpy, 3, Mod1Mask, DefaultRootWindow(dpy), True,
 ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeAsync, None, None);

 start.subwindow = None;
 for(;;) {
 XNextEvent(dpy, &ev);
 if(ev.type == KeyPress && ev.xkey.subwindow != None)
 XRaiseWindow(dpy, ev.xkey.subwindow);
 else if(ev.type == ButtonPress && ev.xbutton.subwindow != None) {
 XGetWindowAttributes(dpy, ev.xbutton.subwindow, &attr);
 start = ev.xbutton;
 } else if(ev.type == MotionNotify && start.subwindow != None) {
 int xdiff = ev.xbutton.x_root - start.x_root;
 int ydiff = ev.xbutton.y_root - start.y_root;
 XMoveResizeWindow(dpy, start.subwindow,
 attr.x + (start.button==1 ? xdiff : 0),
 attr.y + (start.button==1 ? ydiff : 0),
 MAX(1, attr.width + (start.button==3 ? xdiff : 0)),
 MAX(1, attr.height + (start.button==3 ? ydiff : 0)));
 } else if(ev.type == ButtonRelease)
 start.subwindow = None;
 }
}

5 / 20

X Window System Architecture

Talking to the X Server
Xlib
W-----RW-----RW-----RW-----R

XCB
WWWW--RRRR

W : Writing request
- : Stalled, waiting for data
R : Reading reply

6 / 20

// TinyWM is written by Nick Welch <nick@incise.org> in 2005 & 2011.
//
// This software is in the public domain
// and is provided AS IS, with NO WARRANTY.
#include <X11/Xlib.h>

#define MAX(a, b) ((a) > (b) ? (a) : (b))

int main(void)
{
 Display * dpy;
 XWindowAttributes attr;
 XButtonEvent start;
 XEvent ev;

 if(!(dpy = XOpenDisplay(0x0))) return 1;

 XGrabKey(dpy, XKeysymToKeycode(dpy, XStringToKeysym("F1")), Mod1Mask,
 DefaultRootWindow(dpy), True, GrabModeAsync, GrabModeAsync);
 XGrabButton(dpy, 1, Mod1Mask, DefaultRootWindow(dpy), True,
 ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeAsync, None, None);
 XGrabButton(dpy, 3, Mod1Mask, DefaultRootWindow(dpy), True,
 ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeAsync, None, None);

 start.subwindow = None;
 for(;;) {
 XNextEvent(dpy, &ev);
 if(ev.type == KeyPress && ev.xkey.subwindow != None)
 XRaiseWindow(dpy, ev.xkey.subwindow);
 else if(ev.type == ButtonPress && ev.xbutton.subwindow != None) {
 XGetWindowAttributes(dpy, ev.xbutton.subwindow, &attr);
 start = ev.xbutton;
 } else if(ev.type == MotionNotify && start.subwindow != None) {
 int xdiff = ev.xbutton.x_root - start.x_root;
 int ydiff = ev.xbutton.y_root - start.y_root;
 XMoveResizeWindow(dpy, start.subwindow,
 attr.x + (start.button==1 ? xdiff : 0),
 attr.y + (start.button==1 ? ydiff : 0),
 MAX(1, attr.width + (start.button==3 ? xdiff : 0)),
 MAX(1, attr.height + (start.button==3 ? ydiff : 0)));
 } else if(ev.type == ButtonRelease)
 start.subwindow = None;
 }
}

Talking to the X Server

Window ordering

Window 2

7 / 20

Window 1

Talking to the X Server
Xlib
W-----RW-----RW-----RW-----R

XCB
WWWW--RRRR

W : Writing request
- : Stalled, waiting for data
R : Reading reply

Window ordering

Screen Artifacts

Window 2

8 / 20

Window 1

Window ordering

Window 2

Window 1

Screen Artifacts

Screen Artifacts

9 / 20

Window 1

Window 2

Screen Artifacts

Window 2

Window 1

Screen Artifacts

I can haz keyboardz plz?
// taken from awesome keygrabber.c
static bool
keygrabber_grab(void)
{
 xcb_grab_keyboard_reply_t *xgb;

 for(int i = 1000; i; i--) {
 if((xgb = xcb_grab_keyboard_reply(globalconf.connection,
 xcb_grab_keyboard(globalconf.connection, true,
 globalconf.screen->root,
 XCB_CURRENT_TIME, XCB_GRAB_MODE_ASYNC,
 XCB_GRAB_MODE_ASYNC),
 NULL))) {
 p_delete(&xgb);
 return true;
 }
 usleep(1000);
 }
 return false;
}

10 / 20

Screen Artifacts

Window 1

Window 2

I can haz keyboardz plz?

Conclusion
very easy to get something up and running

graphical user interfaces have evolved

"gazillions" of X extensions (legacy demands it)

global name space (bad security implications)

window manager is just a client

duplicating functionality in the window manager

screen artifacts (gets a bit better with COMPOSITE)

11 / 20

I can haz keyboardz plz?
// taken from awesome keygrabber.c

static bool
keygrabber_grab(void)
{

 xcb_grab_keyboard_reply_t *xgb;

 for(int i = 1000; i; i--) {
 if((xgb = xcb_grab_keyboard_reply(globalconf.connection,
 xcb_grab_keyboard(globalconf.connection, true,

 globalconf.screen->root,

 XCB_CURRENT_TIME, XCB_GRAB_MODE_ASYNC,

 XCB_GRAB_MODE_ASYNC),

 NULL))) {

 p_delete(&xgb);

 return true;
 }

 usleep(1000);

 }

 return false;
}

Conclusion

Wayland Architecture

12 / 20

Conclusion
very easy to get something up and running

graphical user interfaces have evolved

"gazillions" of X extensions (legacy demands it)

global name space (bad security implications)

window manager is just a client

duplicating functionality in the window manager

screen artifacts (gets a bit better with COMPOSITE)

Wayland Architecture

Every frame is perfect!

Client A

Client B

Compositor

dr
aw

dr
aw

dr
aw

dr
aw no need to

draw dr
aw

dr
aw

[1] https://emersion.fr/blog/2019/intro-to-damage-tracking/

13 / 20

Wayland Architecture

Every frame is perfect!

https://emersion.fr/blog/2019/intro-to-damage-tracking/

wlroots

[2] https://github.com/swaywm/wlroots

written in C

used by sway [3] https://swaywm.org/

0.1 release Oct 21, 2018

provides a common ground for many compositors

Interesting compositors based on wlroots
tinywl ~1KLOC (shipped with wlroots)

cage [4] https://www.hjdskes.nl/projects/cage/

Pluggable, composable, unopinionated modules for building a
Wayland compositor; or about 50,000 lines of code you were going
to write anyway.

14 / 20

Every frame is perfect!

Client A

Client B

Compositor

dr
aw

dr
aw

dr
aw

dr
aw no need to

draw dr
aw

[1] https://emersion.fr/blog/2019/intro-to-damage-tracking/

wlroots

https://github.com/swaywm/wlroots
https://swaywm.org/
https://www.hjdskes.nl/projects/cage/
https://emersion.fr/blog/2019/intro-to-damage-tracking/

Toolkits
GTK GDK_BACKEND=wayland

Qt QT_QPA_PLATFORM=wayland-egl

Clutter CLUTTER_BACKEND=wayland

SDL SDL_VIDEODRIVER=wayland

Applications
Firefox / Thunderbird MOZ_ENABLE_WAYLAND=1

mpv

wl-clipboard (makes my neovim happy)

Running X Applications on Wayland
Xwayland (needs compositor support)

15 / 20

wlroots

[2] https://github.com/swaywm/wlroots

written in C

used by sway [3] https://swaywm.org/

0.1 release Oct 21, 2018

provides a common ground for many compositors

Interesting compositors based on wlroots
tinywl ~1KLOC (shipped with wlroots)

cage [4] https://www.hjdskes.nl/projects/cage/

Pluggable, composable, unopinionated modules for building a
Wayland compositor; or about 50,000 lines of code you were going
to write anyway.

Toolkits

https://github.com/swaywm/wlroots
https://swaywm.org/
https://www.hjdskes.nl/projects/cage/

Conclusion
it's harder to get something up and running

slightly more code to have the same functionality I
had with X11

fewer processes involved (no duplicated functionality)

UI isolation

way less complexity

direct control over devices

control over frames (no flickering, no tearing, no
flashes)

client side decorations

more responsibility on the compositor

large toolkit support

great opportunity for Open Source systems to catch up

16 / 20

Toolkits
GTK GDK_BACKEND=wayland

Qt QT_QPA_PLATFORM=wayland-egl

Clutter CLUTTER_BACKEND=wayland

SDL SDL_VIDEODRIVER=wayland

Applications
Firefox / Thunderbird MOZ_ENABLE_WAYLAND=1

mpv

wl-clipboard (makes my neovim happy)

Running X Applications on Wayland
Xwayland (needs compositor support)

Conclusion

17 / 20

Conclusion
it's harder to get something up and running

slightly more code to have the same functionality I
had with X11

fewer processes involved (no duplicated functionality)

UI isolation

way less complexity

direct control over devices

control over frames (no flickering, no tearing, no
flashes)

client side decorations

more responsibility on the compositor

large toolkit support

great opportunity for Open Source systems to catch up

Y U NO RUST?

[5] https://github.com/way-cooler/way-cooler/pull/609

The compositor part of Way Cooler is now written in C. The client
portion (i.e. the side that implements the AwesomeWM
functionality) is still written in Rust.

Ultimately, wlroots-rs was too difficult to write. The mental
overhead of attempting to wrap complicated C libraries with Rust is
too demanding. This complexity often leads to a RiiR mindset,
which I am strongly against. So, the compositor is now written in C.

18 / 20

Y U NO RUST?

https://github.com/way-cooler/way-cooler/pull/609

ASAN
clang -fsanitize=address

19 / 20

Y U NO RUST?

[5] https://github.com/way-cooler/way-cooler/pull/609

The compositor part of Way Cooler is now written in C. The client
portion (i.e. the side that implements the AwesomeWM
functionality) is still written in Rust.

Ultimately, wlroots-rs was too difficult to write. The mental
overhead of attempting to wrap complicated C libraries with Rust is
too demanding. This complexity often leads to a RiiR mindset,
which I am strongly against. So, the compositor is now written in C.

ASAN

https://github.com/way-cooler/way-cooler/pull/609

Thank you!
Contact

Mastodon: chaos.social/@raichoo
Matrix: @raichoo:acmelabs.space
Hikari Matrix Chat: #hikari:acmelabs.space

20 / 20

ASAN
clang -fsanitize=address

Thank you!
Contact

Mastodon: chaos.social/@raichoo
Matrix: @raichoo:acmelabs.space
Hikari Matrix Chat: #hikari:acmelabs.space

