X11 and Wayland

A tale of two implementations

@X@ME

L&pos 1/20

X11 and Wayland

A tale of two implementations

Crlis

Concepts
and Goals

What is and what am I trying to achieve?

window manager / compositor

started 1.5 years ago

written from scratch

stacking / tiling hybrid approach inspired by
tiling algorithm inspired by

keyboard driven, for fast navigation

modal, inspired by

waste little screen space

allows to arbitrarily group windows
minimal dependencies

energy efficient

target FreeBSD

X11 and Wayland implementation

V.) X Window System Architecture

X Client

KMS evdev
Kernel

#include <X11/X1ib.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
main()

Display * dpy;
XWindowAttributes attr;
XButtonEvent start;
XEvent ev;

(!(dpy = XOpenDisplay(0x0))) 1;

XGrabKey(dpy, XKeysymToKeycode(dpy, XStringToKeysym("F1")), ModiMask,
DefaultRootWindow(dpy), True, GrabModeAsync, GrabModeAsync);

XGrabButton(dpy, 1, ModiMask, DefaultRootWindow(dpy), True,
ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeA

XGrabButton(dpy, 3, ModiMask, DefaultRootWindow(dpy), True,
ButtonPressMask|ButtonReleaseMask|PointerMotionMask, GrabModeAsync, GrabModeA

start.subwindow = None;

G)
XNextEvent(dpy, &ev);
(ev.type == KeyPress && ev.xkey.subwindow != None)
XRaiseWindow(dpy, ev.xkey.subwindow);

(ev.type == ButtonPress && ev.xbutton.subwindow !'= None) {
XGetWindowAttributes(dpy, ev.xbutton.subwindow, &attr);
start = ev.xbutton;

} (ev.type == MotionNotify && start.subwindow != None) {
xdiff = ev.xbutton.x_root - start.x _root;
ydiff = ev.xbutton.y root - start.y root;
XMoveResizeWindow(dpy, start.subwindow,
attr.x + (start.button==1 ? xdiff : 0),
attr.y + (start.button==1 ? ydiff : 0),
MAX(1, attr.width + (start.button==3 ? xdiff : 0)),
MAX(1, attr.height + (start.button==3 ? ydiff : 0)));
} (ev.type == ButtonRelease)
start.subwindow = None;

Talking to the X Server
Xlib

: Writing request
e :Stalled, waiting for data
: Reading reply

)/) Window ordering

Window 2

Window 1

\Y) Screen Artifacts

Window 2

Window 1

Y) Screen Artifacts

"~ |can haz Reyboardz plz?

keygrabber_grab()

{
*xgb;

(1 =1000; 1; i1--) {
((xgb = xcb_grab_keyboard reply(globalconf.conr
xcb_grab_keyboard(globalconf.connection, true,
globalconf.screen->root,
XCB_CURRENT_TIME, XCB_GRAB_MODE_ASYNC,
XCB_GRAB_MODE_ASYNC),
NULL))) {
p_delete(&xgb);
true;

}
usleep(1000);

false;

\ Conclusion

e very easy to get something up and running
e graphical user interfaces have evolved

e "gazillions" of X extensions (legacy demands
e global name space (bad security implication
e window manager is just a client

e duplicating functionality in the window mat

e screen artifacts (gets a bit better with COMP

Wayland Architecture

Wayland Client
Wayland Client

Wayland
Compositor

KMS evdev
Kernel

https://emersion.fr/blog/2019/intro-to-damage-tracking/

Every frame is perfect!

Client A

Client B
Compositor
= = = = no need to =
© © © © ©
o o o o draw o

[1] https://emersion.fr/blog/2019/intro-to-damage

https://github.com/swaywm/wlroots
https://swaywm.org/
https://www.hjdskes.nl/projects/cage/
https://emersion.fr/blog/2019/intro-to-damage-tracking/

wiroots

Pluggable, composable, unopinionated modules for

Wayland compositor; or about 50,000 lines of code you
to write anyway.

[2] https://github.com/swaywm/wlroots

e written in C

e used by [3] https://swaywm.org/

o release Oct 21, 2018

e provides a common ground for many compc

Interesting compositors based on wiroots

o ~1KLOC (shipped with)

o [4] https://www.hjdskes.nl/projects/cage

https://github.com/swaywm/wlroots
https://swaywm.org/
https://www.hjdskes.nl/projects/cage/

Toolkits

e GTK

° Qt
e Clutter

e SDL

Applications

e Firefox / Thunderbird

(makes my happy)

Running X Applications on Waylar

(needs compositor support)

Conclusion

e it's harder to get something up and running

e slightly more code to have the same functior
had with X11

o fewer processes involved (no duplicated fun
e Ul isolation

e way less complexity

e direct control over devices

e control over frames (no flickering, no tearin
flashes)

e client side decorations
e more responsibility on the compositor
e large toolkit support

e great opportunity for Open Source systems t

https://github.com/way-cooler/way-cooler/pull/609

Y UNO RUST?

The compositor part of Way Cooler is now written in C
portion (i.e. the side that implements the A
functionality) is still written in Rust.

Ultimately, wlroots-rs was too difficult to write.
overhead of attempting to wrap complicated C libraries
too demanding. This complexity often leads to a Rii
which I am strongly against. So, the compositor is now

[5] https://github.com/way-cooler/way-cooler/pul

https://github.com/way-cooler/way-cooler/pull/609

e ARt 1YY

I Ta ta fa fa fa fa fa fa fa faq fa fa fa

ra fa fa fa fa faq

Thank you!

Contact

e Mastodon:;
e Matrix:
e Hikari Matrix Chat:

