
The ZFS filesystem
One day workshop Short talk — LinuxConfAu 2020

Philip Paeps
14 January 2020
Gold Coast, QLD, Australia

• 2001: Development started at Sun (now Oracle)
• 2005: ZFS source code released
• 2008: ZFS released in FreeBSD 7.0
• (2019: ZFS still doesn’t work reliably on Linux)

History of ZFS

End-to-end data integrity
• Detects and corrects silent data

corruption

Pooled storage
• The first 128 bit filesystem
• Eliminates the antique notion of

volumes

Transactional design
• Data always consistent
• Huge performance wins

Simple administration
• Two commands to manage entire

storage configuration

ZFS in a nutshell

• Disks
• Controllers
• Cables
• Firmware
• Device drivers
• Non-ECC memory

End-to-end data integrity

• Checksums are stored with the
data blocks
• Any self-consistent block will

have a correct checksum
• Can’t even detect stray writes
• Inherently limited to single

filesystems or volumes
üBit rot
✘Phantom writes
✘Misdirected reads and writes
✘DMA parity errors
✘Driver bugs
✘Accidental overwrite

Disk block checksums

Data

Checksum

Data

Checksum

Data

Checksum

Disk block checksums only
validate media

• Checksums are stored in parent
block pointers
• Fault isolation between data and

checksum
• Entire storage pool is a self-

validating Merkle tree üBit rot
üPhantom writes
üMisdirected reads and writes
üDMA parity errors
üDriver bugs
üAccidental overwrite

ZFS data authentication

Address Address

Checksum Checksum

Address Address

Checksum Checksum

Data Data

ZFS data authentication
validates entire I/O path

• Single partition or volume per
filesystem
• Each filesystem has limited I/O

bandwidth
• Filesystems must be manually

resized
• Storage is fragmented

Traditional storage architecture

• No partitions required
• Storage pool grows automatically
• All I/O bandwidth is always

available
• All storage in the pool is shared

ZFS pooled storage

4. Rewrite uberblock (atomic)3. COW indirect blocks

2. COW some blocks1. Ini>al consistent state

Copy-on-write transactions

Only two commands:
1. Storage pools: zpool
• Add and replace disks
• Resize pools

2. Filesystems: zfs
• Quotas, reservations, etc.
• Compression and deduplication
• Snapshots and clones
• atime, readonly, etc.

Simple administration

Storage pools

To create a storage pool named
“tank” from a single disk:

After creating a storage pool, ZFS
will automatically:
• Create a filesystem with the same

name (e.g. tank)
• Mount the filesystem under that

name (e.g. /tank)

The storage is immediately
available

Storage pools
Creating storage pools (1/2)

zpool create tank /dev/md0

ZFS can use disks directly. There is
no need to create partitions or
volumes.

All configuration is stored
with the storage pool and
persists across reboots.

No need to edit
/etc/fstab.

mount | grep tank
ls -al /tank
ls: /tank: No such file or directory
zpool create tank /dev/md0
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)
ls -al /tank
total 9
drwxr-xr-x 2 root wheel 2 Oct 12 12:17 .
drwxr-xr-x 23 root wheel 28 Oct 12 12:17 ..
reboot
[...]

mount | grep tank
tank on /tank (zfs, local, nfsv4acls)

Storage pools
Creating storage pools (2/2)

Storage pools
Displaying pool status

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 83K 1016G - - 0% 0% 1.00x ONLINE -

zpool status
pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
md0 ONLINE 0 0 0

errors: No known data errors

ZFS contains a built-in tool to
display I/O statistics.

Given an interval in seconds,
statistics will be displayed
continuously until the user
interrupts with Ctrl+C.

Use -v (verbose) to display
more detailed statistics.

zpool iostat 5
capacity operations bandwidth

pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
tank 83K 1016G 0 0 234 841
tank 83K 1016G 0 0 0 0

zpool iostat -v
capacity operations bandwidth

pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
tank 83K 1016G 0 0 206 739
md0 83K 1016G 0 0 206 739

---------- ----- ----- ----- ----- ----- -----

Storage pools
Displaying I/O statistics

Destroying storage pools is a
constant time operation. If
you want to get rid of your
data, ZFS will help you do it
very quickly!

All data on a destroyed pool
will be irretrievably lost.

time zpool create tank /dev/md0
0.06 real 0.00 user 0.02 sys

time zpool destroy tank
0.09 real 0.00 user 0.00 sys

Storage pools
Destroying storage pools

A pool with just one disk does
not provide any redundancy,
capacity or even adequate
performance.

Stripes offer higher capacity
and better performance
(reading will be parallelised)
but they provide no
redundancy.

zpool create tank /dev/md0 /dev/md1
zpool status

pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1.98T 86K 1.98T 0% 1.00x ONLINE

Storage pools
Creating stripes

Mirrored storage pools
provide redundancy against
disk failures and better read
performance than single-disk
pools.

However, mirrors only have
50% of the capacity of the
underlying disks.

zpool create tank mirror /dev/md0 /dev/md1
zpool status

pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors
zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1016G 93K 1016G 0% 1.00x ONLINE

Storage pools
Creating mirrors (RAID-1)

raidz is a variation on RAID-5
with single-, double-, or triple
parity.

A raidz group with N disks of
size X with P parity disks can
hold approximately (𝑁 − 𝑃) ∗
𝑋 bytes and can withstand P
device(s) failing before data
integrity is compromised.

zpool create tank \
> raidz1 /dev/md0 /dev/md1 /dev/md2 /dev/md3
zpool status
pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0
md2 ONLINE 0 0 0
md3 ONLINE 0 0 0

errors: No known data errors

Storage pools
Creating raidz groups

Single disks, stripes, mirrors
and raidz groups can be
combined in a single storage
pool

ZFS will complain when
adding devices would make
the pool less redundant

zpool create tank mirror /dev/md0 /dev/md1
zpool add tank /dev/md2
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level:
pool uses mirror and new vdev is disk

zpool create tank \
> raidz2 /dev/md0 /dev/md1 /dev/md2 /dev/md3
zpool add tank \
> raidz /dev/md4 /dev/md5 /dev/md6
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level:
pool uses 2 device parity and new vdev uses 1

Storage pools
Combining vdev types

More devices can be added to
a storage pool to increase
capacity without downtime.

Data will be striped across
the disks, increasing
performance, but there will
be no redundancy.

If any disk fails, all data is lost!

zpool create tank /dev/md0
zpool add tank /dev/md1
zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1.98T 233K 1.98T 0% 1.00x ONLINE
zpool status

pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

Storage pools
Increasing storage pool capacity

A storage pool consisting of only one device can be converted to a
mirror.
In order for the new device to mirror the data of the already existing
device, the pool needs to be “resilvered”.
This means that the pool synchronises both devices to contain the same
data at the end of the resilver operation.
During resilvering, access to the pool will be slower, but there will be no
downtime.

Storage pools
Creating a mirror from a single-disk pool (1/4)

Storage pools
Creating a mirror from a single-disk pool (2/4)

zpool create tank /dev/md0
zpool status
pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
md0 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 93K 1016G - - 0% 0% 1.00x ONLINE -

Storage pools
Creating a mirror from a single-disk pool (3/4)

zpool attach tank /dev/md0 /dev/md1
zpool status tank

pool: tank
state: ONLINE

status: One or more devices is currently being resilvered. The pool
will continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.
scan: resilver in progress since Fri Oct 12 13:55:56 2018

5.03M scanned out of 44.1M at 396K/s, 0h1m to go
5.03M resilvered, 11.39% done

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0 (resilvering)

errors: No known data errors

Storage pools
Creating a mirror from a single-disk pool (4/4)

zpool status
pool: tank
state: ONLINE
scan: resilvered 44.2M in 0h1m with 0 errors on Fri Oct 12 13:56:29 2018

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 99.5K 1016G - - 0% 0% 1.00x ONLINE -

Datasets

• ZFS uses the term dataset to
refer to filesystems
• Datasets are mounted

automatically by default
• Can be disabled for individual

datasets (or entire
hierarchies)
• Mountpoint defaults to the

name of the pool
• Can be used like directories

with many useful properties

zfs create tank/users
zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 150K 984G 23K /tank
tank/users 23K 984G 23K /tank/users

zfs create tank/users/a
zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 180K 984G 23K /tank
tank/users 46K 984G 23K /tank/users
tank/users/a 23K 984G 23K /tank/users/a

Datasets
Creating datasets

• Configuration and statistics
are kept in dozens of
properties
• Use zfs get all for a list
• All documented in the zfs(8)

Unix manual page

• Datasets inherit properties
from their parents
• Inherited properties can be

overridden

zfs set atime=off tank
zfs get atime
NAME PROPERTY VALUE SOURCE
tank atime off local
tank/users atime off inherited from tank
tank/users/a atime off inherited from tank

zfs set atime=on tank/users/a
zfs get atime
NAME PROPERTY VALUE SOURCE
tank atime off local
tank/users atime off inherited from tank
tank/users/a atime on local

Datasets
Properties (1/2)

• Read-only properties have
their SOURCE set to -, e.g.:
• creation dataset creation

time
• used currently used space

• Changed properties take
effect immediately; there is
no need to remount
• Overrides can be restored

with the zfs inherit
command.

zfs get creation,used,atime,readonly tank
NAME PROPERTY VALUE SOURCE
tank creation Fri Oct 12 15:15 2018 -
tank used 180K -
tank atime off local
tank readonly off default

mount | grep tank
tank on /tank (zfs, local, noatime, nfsv4acls)

zfs inherit atime tank
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)

Datasets
Properties (2/2)

• By default, ZFS mounts
datasets at the name of the
pool that contain them
• The mountpoint property

changes this behaviour
• Note: mountpoints must

have a leading / (as usual in
Unix) but the ZFS path in
the pool must not have a
leading /.

zfs get mountpoint
NAME PROPERTY VALUE SOURCE
tank mountpoint /tank default
tank/users mountpoint /tank/users default

mount | grep tank
tank on /tank (zfs, local, nfsv4acls)
tank/users on /tank/users (zfs, local, nfsv4acls)

zfs set mountpoint=/usr/home tank/users
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)
tank/users on /usr/home (zfs, local, nfsv4acls)

Datasets
Mounting (1/2)

• The canmount property
determines whether
datasets are mounted
automatically
• Datasets are mounted by

default
• Set canmount=noauto to

not mount the dataset by
default
• Set canmount=off to make

the dataset unmountable

mount | grep tank
tank on /tank (zfs, local, nfsv4acls)
tank/users on /tank/users (zfs, local, nfsv4acls)

zfs set canmount=off tank/users
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)

Datasets
Mounting (2/2)

• Datasets are mounted for
reading and writing by
default
• The readonly property

changes this behaviour
• Remember: properties

persist across reboots; there
is no need to edit
/etc/fstab

zfs create -p tank/projects/current
zfs create tank/projects/finished
zfs set mountpoint=/projects tank/projects

cp -a /home/alice/projects /projects/current

zfs get readonly tank/projects/finished
NAME PROPERTY VALUE SOURCE
tank/projects/finished readonly off default

cp /projects/current/homework.tex \
> /projects/finished

zfs set readonly=on tank/projects/finished
cp -a /projects/current/thesis.tex \
> /projects/finished
cp: /projects/finished: Read-only file system

Datasets
Commonly used properties: readonly

• The exec property
determines whether or not
files can be executed on a
dataset
• Useful on e.g. /var/log

where executing files would
do more harm than good
• Can also be used to protect

the system from
untrustworthy users…

zfs create tank/logfiles
zfs set mountpoint=/var/log tank/logfiles
zfs set exec=off tank/logfiles

zfs get exec
NAME PROPERTY VALUE SOURCE
tank exec on default
tank/logfiles exec off local

mount | grep logfiles
tank/logfiles on /var/log (zfs, local, noexec)

Datasets
Commonly used properties: exec (1/3)

Dataset
Commonly used properties: exec (2/3)

zfs create tank/users
zfs set mountpoint=/home tank/users
zfs set exec=off tank/users
zfs create tank/users/alice
zfs get exec
NAME PROPERTY VALUE SOURCE
tank exec on default
tank/users exec off local
tank/users/alice exec off inherited

ls -al /home/alice/
total 2
drwxr-xr-x 2 alice alice 3 Oct 12 16:54 .
drwxr-xr-x 3 alice alice 3 Oct 12 16:52 ..
-rwxr-xr-x 1 alice alice 27 Oct 12 16:54 evil.sh

Dataset
Commonly used properties: exec (3/3)

% cat /home/alice/evil.sh
#!/bin/sh
rm -fr /projects

% cd /home/alice
% ./evil.sh
sh: ./evil.sh: Permission denied

% su
./evil.sh
./evil.sh: Permission denied.

• User-defined properties can
store locally relevant metadata
with the dataset, e.g.:
• Last backup time
• Cost centre paying for the disks
• Anything you want them to

store!

• A namespace (e.g. acme)
distinguishes user-defined
properties from built-in ones

zfs set acme:lastbackup=20181012030000 tank
zfs get acme:lastbackup tank
NAME PROPERTY VALUE SOURCE
tank acme:lastbackup 20181012030000 local

zfs set acme:disksource=vendorname
zfs set acme:diskbought=2018-10-01
zfs set acme:diskprice=100EUR

Datasets
User-defined properties

• By default, datasets can use
all the space provided by
the underlying storage pool

• Quotas set an upper limit on
how much data can be
stored in a dataset

zfs get quota
NAME PROPERTY VALUE SOURCE
tank quota none default
tank/users quota none default
tank/users/alice quota none default
tank/users/bob quota none default

zfs set quota=10GB tank/users
zfs set quota=50GB tank/users/alice

zfs get quota
NAME PROPERTY VALUE SOURCE
tank quota none local
tank/users quota 10G local
tank/users/alice quota 50G local
tank/users/bob quota none default

Datasets
Quotas (1/3)

Datasets
Quotas (2/3)

zfs get quota
NAME PROPERTY VALUE SOURCE
tank quota none default
tank/users/alice quota none default
tank/users/bob quota none default

df -h
Filesystem Size Used Avail Capacity Mounted on
tank 984G 23K 984G 0% /tank
tank/users/alice 984G 23K 984G 0% /tank/users/alice
tank/users/bob 984G 23K 984G 0% /tank/users/bob

zfs set quota=500M tank/users/alice
df -h
Filesystem Size Used Avail Capacity Mounted on
tank 984G 23K 984G 0% /tank
tank/users/alice 500M 23K 500M 0% /tank/users/alice
tank/users/bob 984G 23K 984G 0% /tank/users/bob

Datasets
Quotas (3/3)

dd if=/dev/urandom of=/tank/users/alice/bigfile.dat
dd: /tank/users/alice/bigfile.dat: Disc quota exceeded

ls -alh /tank/users/alice/bigfile.dat
-rw-r--r-- 1 root wheel 500M Oct 12 18:21 /tank/users/alice/bigfile.dat

df -h
Filesystem Size Used Avail Capacity Mounted on
tank 984G 23K 984G 0% /tank
tank/users/alice 500M 500M 0B 100% /tank/users/alice
tank/users/bob 984G 23K 984G 0% /tank/users/bob

• Reservations ensure that
there is always a certain
amount of free space
available to a dataset
• This is in contrast with

quotas, which ensure that
no more than a certain
amount of data can be
written

zfs get reservation
NAME PROPERTY VALUE SOURCE
tank reservation none default
tank/users reservation none default
tank/users/alice reservation none default
tank/users/bob reservation none default

zfs set reservation=500M tank/users/bob

Datasets
Reservations (1/3)

Datasets
Reservations (2/3)

zfs get reservation
NAME PROPERTY VALUE SOURCE
tank reservation none default
tank/users/alice reservation none default
tank/users/bob reservation none default

df -h
Filesystem Size Used Avail Capacity Mounted on
tank 1.2G 23K 1.2G 0% /tank
tank/users/alice 1.2G 23K 1.2G 0% /tank/users/alice
tank/users/bob 1.2G 23K 1.2G 0% /tank/users/bob

zfs set reservation=500M tank/users/bob
df -h
Filesystem Size Used Avail Capacity Mounted on
tank 780M 23K 780M 0% /tank
tank/users/alice 780M 23K 780M 0% /tank/users/alice
tank/users/bob 1.2G 23K 1.2G 0% /tank/users/bob

Datasets
Reservations (3/3)

dd if=/dev/urandom of=/tank/users/alice/bigfile.dat bs=850M
dd: /tank/users/alice/bigfile.dat: No space left on device

ls -alh /tank/users/alice/bigfile.dat
-rw-r--r-- 1 root wheel 780M Oct 12 18:21 /tank/users/alice/bigfile.dat

df -h /tank /tank/users /tank/users/alice /tank/users/bob
Filesystem Size Used Avail Capacity Mounted on
tank 23K 23K 0B 100% /tank
tank/users/alice 780M 780M 0B 100% /tank/users/alice
tank/users/bob 500M 23K 500M 0% /tank/users/bob

• ZFS can transparently
compress data written to
datasets and decompress it
automatically when reading
• Several algorithms are

available
• Default: lz4
• gzip, gzip-N, zle, lzjb,…

• Only newly written data is
compressed. ZFS does not
recompress existing data!

zfs create \
> -o mountpoint=/usr/ports \
> -p tank/ports/uncompressed
portsnap fetch extract
zfs list tank/ports
NAME USED AVAIL REFER MOUNTPOINT
tank/ports 437M 984G 23K /usr/ports

zfs create tank/ports/compressed
zfs set compression=on tank/ports/compressed
cp -a /usr/ports/ /tank/ports/compressed/

zfs list -r tank/ports
NAME USED AVAIL REFER
tank/ports 636M 983G 23K
tank/ports/compressed 196M 983G 196M
tank/ports/uncompressed 440M 983G 440M

Datasets
Compression (1/2)

• The compressratio property
can be checked to evaluate how
effective compression is
• It’s very easy to experiment!

• Bonus: compression also
improves read performance on
systems where the CPU is
faster than the disks
(i.e.: most systems)

zfs get compression,compressratio
NAME PROPERTY VALUE
tank/ports/compressed compression on
tank/ports/compressed compressratio 2.47x

zfs create tank/ports/gzipped
zfs set compression=gzip-9 tank/ports/gzipped
cp -a /tank/ports/compressed/
> /tank/ports/gzipped/

zfs get -r compressratio,used tank/ports
NAME PROPERTY VALUE
tank/ports/compressed compressratio 2.47x
tank/ports/compressed used 197M
tank/ports/gzipped compressratio 3.10x
tank/ports/gzipped used 163M
tank/ports/uncompressed compressratio 1.00x
tank/ports/uncompressed used 440M

Datasets
Compression (2/2)

Snapshots

• A snapshot is a read-only copy of
a dataset or volume
• ZFS snapshots are extremely fast
• Side-effect of the underlying copy-

on-write transaction model
• Faster than deleting data!

• Snapshots occupy no space until
the original data starts to diverge

Snapshots
Overview

• A snapshot only needs an identifier
• Can be anything you like!
• A timestamp is traditional
• But you can use more memorable identifiers too…

Snapshots
Creating and listing snapshots (1/2)

zfs snapshot tank/users/alice@myfirstbackup
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice@myfirstbackup 0 - 23K -

zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 23K 984G 23K /tank/users/alice
tank/users/alice@myfirstbackup 0 - 23K -

• Snapshots save only the changes between the time they were created
and the previous (if any) snapshot
• If data doesn’t change, snapshots occupy zero space

Snapshots
Creating and listing snapshots (2/2)

echo hello world > /tank/users/alice/important_data.txt
zfs snapshot tank/users/alice@mysecondbackup
zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 36.5K 984G 23.5K /tank/users/alice
tank/users/alice@myfirstbackup 13K - 23K -
tank/users/alice@mysecondbackup 0 - 23.5K -

• ZFS can display the
differences between
snapshots

touch /tank/users/alice/empty
rm /tank/users/alice/important_data.txt
zfs diff tank/users/alice@mysecondbackup
M /tank/users/alice/
- /tank/users/alice/important_data.txt
+ /tank/users/alice/empty

Snapshots
Differences between snapshots

Character Type of change
+ File was added
- File was deleted
M File was modified
R File was renamed

• Snapshots can be rolled
back to undo changes
• All files changed since the

snapshot was created will
be discarded

echo hello_world > important_file.txt
echo goodbye_cruel_world > also_important.txt
zfs snapshot tank/users/alice@myfirstbackup
rm *

ls

zfs rollback tank/users/alice@myfirstbackup

ls
also_important.txt important_file.txt

Snapshots
Rolling back snapshots (1/2)

• By default, the latest
snapshot is rolled back. To
roll back an older snapshot,
use -r
• Note that intermediate

snapshots will be destroyed
• ZFS will warn about this

touch not_very_important.txt
touch also_not_important.txt
ls
also_important.txt important_file.txt
also_not_important.txt not_very_important.txt
zfs snapshot tank/users/alice@mysecondbackup
zfs diff tank/users/alice@myfirstbackup \
> tank/users/alice@mysecondbackup
M /tank/users/alice/
+ /tank/users/alice/not_very_important.txt
+ /tank/users/alice/also_not_important.txt
zfs rollback tank/users/alice@myfirstbackup
zfs rollback -r tank/users/alice@myfirstbackup
ls
also_important.txt important_file.txt

Snapshots
Rolling back snapshots (2/2)

• Sometimes, we only want to
restore a single file, rather
than rolling back an entire
snapshot
• ZFS keeps snapshots in a very

hidden .zfs/snapshots
directory
• It’s like magic :-)
• Set snapdir=visible to

unhide it
• Remember: snaphots are read-

only. Copying data to the
magic directory won’t work!

ls
also_important.txt important_file.txt

rm *
ls

ls .zfs/snapshot/myfirstbackup
also_important.txt important_file.txt

cp .zfs/snapshot/myfirstbackup/* .

ls
also_important.txt important_file.txt

Snapshots
Restoring individual files

• Clones represent a writeable copy of a read-only snapshot
• Like snapshots, they occupy no space until they start to diverge

Snapshots
Cloning snapshots

zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 189M 984G 105M /tank/users/alice
tank/users/alice@mysecondbackup 0 - 105M -

zfs clone tank/users/alice@mysecondbackup tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 0 984G 105M /tank/users/eve

• Snapshots cannot be deleted
while clones exist
• To remove this dependency,

clones can be promoted to
”ordinary” datasets
• Note that by promoting the

clone, it immediately starts
occupying space

zfs destroy tank/users/alice@mysecondbackup
cannot destroy 'tank/users/alice@mysecondbackup’:
snapshot has dependent clones
use '-R' to destroy the following datasets:
tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 0 984G 105M /tank/users/eve

zfs promote tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 189M 984G 105M /tank/users/eve

Snapshots
Promoting clones

Self-healing data
Demo

Traditional mirroring

Self-healing data in ZFS

• We have created a
redundant pool with two
mirrored disks and stored
some important data on it

• We will be very sad if the
data gets lost! :-(

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 74K 984G 23K /tank

cp -a /some/important/data/ /tank/

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 3.23G 981G 3.23G /tank

Self-healing data demo
Store some important data (1/2)

Self-healing data demo
Store some important data (2/2)

zpool status tank
pool: tank
state: ONLINE
scan: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 3.51G 1012G - - 0% 0% 1.00x ONLINE -

Caution!

This example can destroy
data when used on the wrong
device or a non-ZFS
filesystem!

Always check your backups!

zpool export tank

dd if=/dev/random of=/dev/md1 bs=1m count=200

zpool import tank

Self-healing data demo
Destroy one of the disks (1/2)

Self-healing data demo
Destroy one of the disks (2/2)

zpool status tank
pool: tank

state: ONLINE
status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-9P

scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 5
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (1/3)

zpool scrub tank
zpool status tank

pool: tank
state: ONLINE

status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace'.

see: http://illumos.org/msg/ZFS-8000-9P
scan: scrub in progress since Fri Oct 12 22:57:36 2018

191M scanned out of 3.51G at 23.9M/s, 0h2m to go
186M repaired, 5.32% done

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 1.49K (repairing)
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (2/3)

zpool status tank
pool: tank

state: ONLINE
status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-9P

scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 1.54K
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
Make sure everything is okay (3/3)

zpool clear tank

zpool status tank
pool: tank

state: ONLINE
scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
md0 ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

Self-healing data demo
But what if it goes very wrong? (1/2)

zpool status
pool: tank

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub in progress since Fri Oct 12 22:46:01 2018
498M scanned out of 3.51G at 99.6M/s, 0h0m to go
19K repaired, 13.87% done

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 1.48K

mirror-0 ONLINE 0 0 2.97K
md0 ONLINE 0 0 2.97K
md1 ONLINE 0 0 2.97K

errors: 1515 data errors, use '-v' for a list

Self-healing data demo
But what if it goes very wrong? (2/2)

zpool status –v
pool: tank

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub repaired 19K in 0h0m with 1568 errors on Fri Oct 12 22:46:25 2018
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 1.53K

mirror-0 ONLINE 0 0 3.07K
md0 ONLINE 0 0 3.07K
md1 ONLINE 0 0 3.07K

errors: Permanent errors have been detected in the following files:
/tank/FreeBSD-11.2-RELEASE-amd64.vhd.xz
/tank/base-amd64.txz
/tank/FreeBSD-11.2-RELEASE-amd64-disc1.iso.xz
/tank/intro_slides.pdf

Deduplication

Intentional duplication
• Backups, redundancy

Unintentional duplication
• Application caches
• Temporary files

• Node.js (Grrr!)

Duplication

• Implemented at the block layer
• ZFS detects when it needs to

store an exact copy of a block
• Only a reference is written rather

than the entire block
• Can save a lot of disk space

BA C D

D A B

A

A

A

D

D

D

D

C

C

C

C

C

B

B

B

B

A

BA C D

Deduplication

• ZFS must keep a table of the checksums of every block it stores
• Depending on the blocksize, this table can grow very quickly
• Deduplication table must be fast to access or writes slow down
• Ideally, the deduplication table should fit in RAM
• Keeping a L2ARC on fast SSDs can reduce the cost somewhat

Rule of thumb:
5GB of RAM for each TB of data stored

Deduplication
Memory cost

• The ZFS debugger (zdb) can be used to evaluate if turning on
deduplication will save space in a pool
• In most workloads, compression will provide much more significant

savings than deduplication
• Consider whether the cost of RAM is worth it
• Also keep in mind that it is a lot easier and cheaper to add disks to a

system than it is to add memory

Deduplication
Is it worth it? (1/2)

Deduplication demo
Is it worth it? (2/2)

zdb -S tank
Simulated DDT histogram:

bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----

1 25.1K 3.13G 3.13G 3.13G 25.1K 3.13G 3.13G 3.13G
2 1.48K 189M 189M 189M 2.96K 378M 378M 378M

Total 26.5K 3.32G 3.32G 3.32G 28.0K 3.50G 3.50G 3.50G

dedup = 1.06, compress = 1.00, copies = 1.00, dedup * compress / copies = 1.06

Deduplication demo
Control experiment (1/2)

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank dedup off default

for p in `seq 0 4`; do
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 2.14G 5.36G - - 3% 28% 1.00x ONLINE -

Deduplication demo
Control experiment (2/2)

zdb -S tank
Simulated DDT histogram:

bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----

4 131K 374M 374M 374M 656K 1.82G 1.82G 1.82G
8 2.28K 4.60M 4.60M 4.60M 23.9K 48.0M 48.0M 48.0M

16 144 526K 526K 526K 3.12K 10.5M 10.5M 10.5M
32 22 23.5K 23.5K 23.5K 920 978K 978K 978K
64 2 1.50K 1.50K 1.50K 135 100K 100K 100K

256 1 512 512 512 265 132K 132K 132K
Total 134K 379M 379M 379M 685K 1.88G 1.88G 1.88G

dedup = 5.09, compress = 1.00, copies = 1.00, dedup * compress / copies = 5.09

Deduplication demo
Enabling deduplication

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank dedup on default

for p in `seq 0 4`; do
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 670M 6.85G - - 6% 8% 5.08x ONLINE -

Deduplication demo
Compare with compression

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression gzip-9 local
tank dedup off default

for p in `seq 0 4`; do
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 752M 6.77G - - 3% 9% 1.00x ONLINE -

• ZFS deduplication can save a lot
of space under some workloads
but at the expense of a lot of
memory
• Often, compression will give

similar or better results
• Always check with zdb -S

whether deduplication would be
worth it

Control experiment 2.14G
Deduplication 670M
Compression 752M

Deduplication
Summary

Serialisation
Encrypted backups over the network

Excercises

• Take a snapshot of your virtual machine before you start the exercises.

• Download an appropriate FreeBSD VM image from my laptop on the
SANOG33 wireless network:

http://172.16.0.182/

Lab preliminaries

http://172.16.0.182/

Exercises
Storage pools

1. Create eight fake disks on your
virtual machine
• Use truncate(1) and
mdconfig(8)
• Bonus points: write a shell loop!

2. Create a pool with one disk
3. Add a second disk to the pool
4. Add a mirror of two more disks

to the pool

Storage pools (1/3)

truncate -s 1TB diskX

mdconfig -a -t vnode -f diskX

zpool create
zpool add
zpool attach
zpool destroy

NOTE: If you want to use fake disks larger
than the disk in your virtual machine
you must set this sysctl(8) first:

sysctl vfs.zfs.vdev.trim_on_init=0

Your VM will run out of space if you forget!

1. Destroy the pool from the
previous exercise and create a
new pool with one disk

2. Convert the pool to a mirror by
attaching a second disk

3. Add a third disk to the pool

Storage pools (2/3)

truncate -s 1TB diskX

mdconfig -a -t vnode -f diskX

zpool create
zpool add
zpool attach
zpool destroy

NOTE: If you want to use fake disks larger
than the disk in your virtual machine
you must set this sysctl(8) first:

sysctl vfs.zfs.vdev.trim_on_init=0

Your VM will run out of space if you forget!

1. Destroy the pool from the
previous exercise and create a
new pool with two mirrored
disks

2. Add a raidz set of four disks to
the pool

3. Add the last two disks to the
pool as an extra mirror

Storage pools (3/3)

truncate -s 1TB diskX

mdconfig -a -t vnode -f diskX

zpool create
zpool add
zpool attach
zpool destroy

NOTE: If you want to use fake disks larger
than the disk in your virtual machine
you must set this sysctl(8) first:

sysctl vfs.zfs.vdev.trim_on_init=0

Your VM will run out of space if you forget!

1. Create a raidz pool with four
disks and copy the FreeBSD
ports tree to it.

2. Export the pool and destroy one
disk at random.

3. Import the pool.

4. Scrub the pool and export it
again.

5. Destroy a second disk and try
to import the pool.

6. Explain what happens.
7. How would you protect against

this eventuality?

Self-healing data

Exercises
Datasets

1. Create the datasets as shown in the example below
2. Set a quota of 500M on tank/users and 1G on tank/users/bob
3. Copy a 1G file to /tank/users/bob
4. Explain what happens

Quotas

zfs list -r tank
NAME USED AVAIL REFER MOUNTPOINT
tank 176K 1.75G 23K /tank
tank/users 92K 1.75G 23K /tank/users
tank/users/alice 23K 1.75G 23K /tank/users/alice
tank/users/bob 23K 1.75G 23K /tank/users/bob
tank/users/eve 23K 1.75G 23K /tank/users/eve

1. Repeat the previous exercise, but set a reservation of 500M on
tank/users instead of a quota.

2. Now what happens?

Reservations

Exercises
Snapshots

• ZFS: The last word in filesystems
Jeff Bonwick and Bill Moore
URL:
https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf

• Introduction to the ZFS filesystem
Benedict Reuschling
URL: [offline]

Credits

https://wiki.illumos.org/download/attachments/1146951/zfs_last.pdf

