
logstor: A Log-structured
Use-level GEOM Layer

Wuyang Chung
wy-chung@outlook.com
https://github.com/wy-chung/logstor/tree/ggatelog/docs

EuroBSDCon 2021

mailto:wy-chung@outlook.com
https://github.com/wy-chung/logstor/tree/ggatelog/docs


Outline

● Introduction
– GEOM
– logstor

● Implementation
● Performance
● Future Work



Introduction - GEOM

DISK

MBR

DEV

BSD DEV DEV

DEV

DEV

ad0s1a ad0s1b

ad0s1 ad0s2

ad0

logstor

glogstor

DEV



Introduction - logstor

● Use the idea from log-structured file system
– Data written are appended to the end of the log

● Can transform random write to sequential write

– Implement a simple file system to store the forward 
map information

– Also need a inverse map information for garbage 
collection

● Stored at the end of every segment

– The algorithm used for garbage collection is hot-
cold separation with aging for wear leveling



Implementation

superblock segment 2 segment 3 segment n-1...

data inverse
map

● Disk is divided into segments
● The first two segments are for superblock
● A inverse map is stored at the end of each segment
● A “simple file system” is used to store the forward map 

information
– Its data and metadata are also stored in logstor's data areas

superblock



Implementation

PD

PT PT

data data data data data data

superblock

A simple file on diskA simple file on disk



Implementation

● The simple file system
– For storing forward map information
– Supports at most 4 files
– Doesn't support sub-directory
– Doesn't support file naming, use a integer number 

instead
– Doesn't record the modify time, access time, file size, 

...
– Use page table data structure to track all the data 

sectors of a simple file



Implementation

● The simple file system
– Reserve a small portion of logical address for 

simple file system
● Since the metadata (PDs and PTs) and data blocks of the 

simple file system are also stored in segment's data area
● The logical address bigger than 0xFF000000 is reserved 

for simple file system
● Assign a unique logical address for each metadata and 

data blocks of the simple file system

– Use a buffer cache to cache the recently used data 
and metadata



Implementation

PD

PT PT

data data data data data data

PT
queue

circular
queue

PD
queue

The buffer cache in DRAM for simple file systemThe buffer cache in DRAM for simple file system

rc

R M R M R M R M R M R M

rc

rc

rc: reference count
R: reference bit
M: modify bit

rc: reference count
R: reference bit
M: modify bit



Implementation

● The simple file buffer cache
– Cache the recently used metadada and data sectors
– All PD buffers are in PD’s queue
– All PT buffers are in PT’s queue
– All the data buffers are in a circular queue

● Victim is chosen from this queue
● Replacement policy: second chance 

– All metadata (PDs and PTs) and data buffers are also 
placed in a hash queue

– PD buffers and PT buffers are demoted to circular queue 
when its reference count becomes 0



Garbage Collection

● Assume the lower-level disk is a flash disk
● Hot-cold separation

– Logstor simple file write → hot log
– Valid sectors collected from GC → cold log
– Upper layer write → hot log

● Upper layer should provide a hint of hotness

● Cleaning policy
– Round-robin with aging
– For wear leveling



Garbage Collection

utilization recycle it

age

increase age

low

high

young

old

end

start

get next
segment

Round-robin with agingRound-robin with aging

Is_sector_valid(p)
{
inverse(p) → l
forward(l) → p'
if (p == p')

return true // valid
else

return false //invalid
}

for wear-levelingfor wear-leveling



Performance

Test procedure

1.Create logstor device

2.Create a new file system on 
logstor and enable TRIM

3.Mount logstor to /mnt

4.Copy FreeBSD's src to /mnt

5.Build the kernel
Set the build target to /mnt/obj

6.Remove /mnt/obj

7.Remove /mnt/src

num test case logstor ggatel

1 cp src 593.75 s 657.80 s

2 build kernel 3,224.51 s 3,128.66 s

3 rm obj 85.21 s 47.72 s

4 build kernel 3,191.08 s 3,100.03 s

5 rm obj 49.97 s 46.89 s

6 rm src 214.47 s 208.48 s



Future Work

● Move logstor to kernel level
● Support checkpoint
● Support disk-level incremental backup



Checkpoint

fmap
file

fmap
file

cur checkpoint

fmap
file

fmap
file

cur checkpoint

checkpoint

1. merge

2. clear



Disk Incremental Backup

fmap
file

fmap
file

fmap
file

cur checkpoint prev

fmap
file

fmap
file

fmap
file

cur checkpoint prev

fmap
file

snapshot

fmap
file

fmap
file

fmap
file

cur checkpoint prev

snapshot

1. merge

2. clear

mvfmap
file

snapshot

fmap
file

snapshotsnapshot
merge

It is clean
most of the time

It is clean
most of the time



Questions?

The End


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

