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Introduction - GEOM
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Introduction - logstor

● Use the idea from log-structured file system
– Data written are appended to the end of the log

● Can transform random write to sequential write

– Implement a simple file system to store the forward 
map information

– Also need a inverse map information for garbage 
collection

● Stored at the end of every segment

– The algorithm used for garbage collection is hot-
cold separation with aging for wear leveling



Implementation

superblock segment 2 segment 3 segment n-1...

data inverse
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● Disk is divided into segments
● The first two segments are for superblock
● A inverse map is stored at the end of each segment
● A “simple file system” is used to store the forward map 

information
– Its data and metadata are also stored in logstor's data areas

superblock



Implementation
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Implementation

● The simple file system
– For storing forward map information
– Supports at most 4 files
– Doesn't support sub-directory
– Doesn't support file naming, use a integer number 

instead
– Doesn't record the modify time, access time, file size, 

...
– Use page table data structure to track all the data 

sectors of a simple file



Implementation

● The simple file system
– Reserve a small portion of logical address for 

simple file system
● Since the metadata (PDs and PTs) and data blocks of the 

simple file system are also stored in segment's data area
● The logical address bigger than 0xFF000000 is reserved 

for simple file system
● Assign a unique logical address for each metadata and 

data blocks of the simple file system

– Use a buffer cache to cache the recently used data 
and metadata



Implementation
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Implementation

● The simple file buffer cache
– Cache the recently used metadada and data sectors
– All PD buffers are in PD’s queue
– All PT buffers are in PT’s queue
– All the data buffers are in a circular queue

● Victim is chosen from this queue
● Replacement policy: second chance 

– All metadata (PDs and PTs) and data buffers are also 
placed in a hash queue

– PD buffers and PT buffers are demoted to circular queue 
when its reference count becomes 0



Garbage Collection

● Assume the lower-level disk is a flash disk
● Hot-cold separation

– Logstor simple file write → hot log
– Valid sectors collected from GC → cold log
– Upper layer write → hot log

● Upper layer should provide a hint of hotness

● Cleaning policy
– Round-robin with aging
– For wear leveling



Garbage Collection
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Is_sector_valid(p)
{
inverse(p) → l
forward(l) → p'
if (p == p')

return true // valid
else

return false //invalid
}

for wear-levelingfor wear-leveling



Performance

Test procedure

1.Create logstor device

2.Create a new file system on 
logstor and enable TRIM

3.Mount logstor to /mnt

4.Copy FreeBSD's src to /mnt

5.Build the kernel
Set the build target to /mnt/obj

6.Remove /mnt/obj

7.Remove /mnt/src

num test case logstor ggatel

1 cp src 593.75 s 657.80 s

2 build kernel 3,224.51 s 3,128.66 s

3 rm obj 85.21 s 47.72 s

4 build kernel 3,191.08 s 3,100.03 s

5 rm obj 49.97 s 46.89 s

6 rm src 214.47 s 208.48 s



Future Work

● Move logstor to kernel level
● Support checkpoint
● Support disk-level incremental backup



Checkpoint
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Disk Incremental Backup
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Questions?

The End
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