
An Overview of Scheduling
in the FreeBSD Kernel

Brought to you by

Dr. Marshall Kirk McKusick

EuroBSD Conference 2021
19 September 2021

Gushaus Campus of Vienna’s Technical University
Vienna, Austria

Copyright 2021 Marshall Kirk McKusick.
All Rights Reserved.

1

Scheduling Classes

Threads are divided into five scheduling
classes

Priority Class Thread type

0 – 47 ITHD Bottom-half kernel (interrupt)
48 – 79 REALTIME Real-time user
80 – 119 KERN Top-half kernel
120 – 223 TIMESHARE Time-sharing user
224 – 255 IDLE Idle user

• Higher values of priority imply lower
levels of service

• ITHD and KERN classes are managed by
the kernel

• REALTIME and IDLE classes are
managed by user processes

• TIMESHARE class management shared
by kernel and user processes

2 text ref: pp. 97

Scheduling Choices

Real time

• processes set specific priorities

• kernel does not change priorities

Interactive scheduler (ULE)

• processor affinity

• kernel sets priority based on interactivity
score

Share scheduler (4BSD)

• multi-level feedback queues

• kernel changes priority based on run
behavior

Idle scheduler

• administrator set specific priorities

• kernel does not change priorities

text ref: p. 114 3

Run Queues

The 4BSD scheduler uses a single global set
of run queues organized from highest to
lowest priority (priorities 0 - 255)

The ULE scheduler uses three sets of run
queues for each CPU:

1) real-time queue has kernel, real-time, and
timeshare threads classified as interactive
and is organized from highest to lowest
priority (priorities 0 - 171)

2) batch queue has timeshare threads
classified as batch and is organized as a
calendar queue (priorities 172 - 223)

3) idle queue has idle threads and is
organized from highest to lowest priority
(priorities 224 - 255)

4 text ref: pp. 97, 114-117, 121-122

Priority-based Queues

• Run queues contain all runnable threads in
memory except the running threads.

• Threads are placed at the end of the
appropriate queue by setrunnable().

• Threads are removed from their queue by
remrunqueue() and (when run) by
sched_switch().

0 1 ...1rq_status[]

scnsav

firefoxxvvidplay

td_runq

rogue

emacs

qs[]

high priority
95

...

120

...

150

...

171

vi

low priority

text ref: pp. 115-117 5

Calendar-based Queues

0

lisp troff

ccrunq

insq

NQUEUE-1

f77

• run as a circular queue

• NQUEUE = number of batch priorities + 1

• run at runq until queue empty, then increment

• insert at:

(insq + priority - MINBATPRI) % NQUEUE

• increment insq

• every 10 milliseconds

• with runq when incremented runq == insq

6 text ref: pp. 121-122

Run Priority

Run selection order:

1) If any real-time threads, select from
first thread in highest priority non-
empty queue

2) If any batch-queue threads, run
calendar queue starting from first
thread at current (runq) entry

3) If any idle-queue threads, select from
first thread in highest priority non-
empty queue

text ref: pp. 115-117, 121-122 7

Low-level Scheduling

• Choosing to context switch

• For priority-based queues, run all
threads in top queue round robin,
switching every 10 milliseconds but
such that every thread will run within
50 milliseconds (a queue with ten
threads will use 5 millisecond time
slices)

• For calendar-based queues, run all
threads in current slot until empty
giving every one a time slice of the
same duration as used for priority-
based queues

• When a thread other than the currently
running thread attains better priority,
switch immediately

8 text ref: pp. 114-117, 121

Scheduling context switch

Context switches are requested:

• when blocking voluntarily (sleep)

• when higher-priority process becomes
runnable (wakeup, setrunnable), mostly
from interrupt level

• once per time slice (roundrobin)

Request is posted by:

• setting NEEDRESCHED flag in td_flags

Request is processed:

• after return from interrupt, if idling, or

• at end of current system call or trap (if
any)

If rescheduling is involuntary, process places
itself at end of run queue before switch

text ref: pp. 100-106 9

Context Switching (sscc hheedd__sswwiittcchh)

Under kernel control, switch from one thread
to another:

• sav e context of current thread

• registers

• address space

• choose next thread to run

• find highest-priority queue with threads

• remove first thread from queue

• if no queue contains threads, unblock
interrupts and repeat selection

• clear NEEDRESCHED flag

• restore context of new thread

10 text ref: pp. 115-117

ULE Scheduler Goals

Identify and give low latency to interactive
threads

• allow brief bursts of activity

• differentiate time waiting for CPU from
time waiting for user input

Only migrate threads when necessary
(processor affinity)

Understand CPU hierarchy; in decreasing
order, preference is to run on:

• same CPU

• a CPU on same chip

• a CPU on same board

• a CPU in same chassis

Constant scheduling time independent of
number of threads to be scheduled

text ref: pp. 117-119 11

Differentiating Interactive versus Batch

Scheduling variables

p_nice -20 to +20 (0 is normal)

td_runtime recent CPU utilization

td_slptick recent voluntary sleep time

td_priority current priority

td_user_pri priority when running
user level

• td_runtime accumulates running ticks

• td_slptick accumulates sleeping ticks

• decay td_runtime and td_slptick when
their sum exceeds five seconds

td_runtime = (td_runtime / 5) * 4;
td_slptick = (td_slptick / 5) * 4;

• recompute priority when thread is
aw akened or accumulates a tick

• Interactive if td_slptick exceeds
td_runtime

12 text ref: pp. 120-122

Selecting CPU on Which to Run

When a thread becomes runnable search for
best CPU as follows:

• Threads with hard affinity to a single CPU
or short-term binding pick only allowed
CPU

• Interrupt threads that are being scheduled
by their hardware interrupt handlers are
scheduled on the current CPU if their
priority is high enough to run immediately

• Starting from the last CPU on which the
thread ran, walk down hierarchy until a
CPU is found with valid affinity that can
run the thread immediately

• Search whole system for least-loaded CPU
running a lower-priority thread

• Search whole system for least-loaded CPU

• If search offers better CPU choice than
last CPU on which thread ran, switch to it
(the longer the sleep the more willing to
move)

text ref: pp. 122-124 13

Rebalancing CPU Loads

Periodically need to rebalance threads
between CPUs

When CPU idles, it looks for other CPUs
from which it can steal work

When job added to a CPU with excessive
load, it looks for other CPUs to which it can
push work

Approximately once per second load balancer
moves a thread from the busiest CPU to the
least busy CPU

14 text ref: pp. 124-125

Questions

References:

• Marshall Kirk McKusick, George Neville-
Neil, and Robert Watson, ‘‘The Design
and Implementation of the FreeBSD
Operating System, 2nd Edition’’, Section
4.4 (pages 114-126)

Marshall Kirk McKusick

<mckusick@mckusick.com>

http://www.mckusick.com

text ref: pp. 124-125 15

Notes

16

FreeBSD Kernel Internals on Video

This 40-hour course is the detailed version of this introductory video and provides a com-

plete background of the FreeBSD kernel. It covers all the topics in the book. In addition,

it covers other related topics including performance measurement and system tuning.

The first video provides an introduction to the FreeBSD community. The remaining

videos consist of fifteen lectures on the FreeBSD kernel that align with the book chapters.

There are assigned readings to be completed before viewing each lecture. The first thir-

teen lectures have a set of exercises to be done after each video is viewed. Follow-up

comments on the exercises are provided at the beginning of the lecture following the one

in which they are assigned.

The syllabus for the the course is as follows:

0) Preface: an introduction to the FreeBSD community

1) Introduction: kernel terminology and basic kernel services

2) Kernel-resource management: locking

3) Processes: process structure and process management

4) Security: security framework and policies, Capsicum, and jails

5) Virtual memory: virtual-memory management, paging, and swapping

6) Kernel I/O system: multiplexing I/O, support for multiple filesystems, the block I/O

system (buffer cache), and stackable filesystems

7) Devices: special files, pseudo-terminal handling, autoconfiguration strategy, structure

of a disk device driver, and machine virtualization

8) Local filesystem implementation: fast filesystem (FFS)

9) Local filesystem implementation: zettabyte filesystem (ZFS)

10) Remote filesystem implementation: network filesystem (NFS)

11) Interprocess communication: concepts and terminology, basic IPC services, system

layers and interfaces, and code review of a simple application that demonstrates use

of the IPC and network facilities

12) Network layer: IPv4 and IPv6 protocols, firewalls, and routing

13) Transport layer: TCP and SCTP

14) System startup: boot loaders, kernel startup, and system launch; system measurement

tools

15) System tuning: performance measurement and system tuning

In addition to the preface and fifteen lecture videos, you also receive a copy of the

course notes containing copies of all the overhead slides used in the course, an extensive

set of written notes about each lecture, a set of weekly readings from this textbook, thir-

teen sets of exercises (along with answers), and a set of papers that provide supplemental

reading to the text.

Tiered pricing is available for companies, individuals, and students. On-site courses

can be arranged. For up-to-date information on course availability and pricing or to place

an order, see the Web page at

http://www.mckusick.com/courses/

17

Advanced FreeBSD Course on Video

The 46-hour course provides an in-depth study of the source code of the FreeBSD kernel.

It is aimed at users who already have a good understanding of the algorithms used in the

FreeBSD kernel and want to learn the details of each algorithm’s implementation. Stu-

dents are expected to have either taken this class or a similar class taught by the instructor

or to have throughly read and understood ‘‘The Design and Implementation of the Free-

BSD Operating System, Second Edition’’ (published by Pearson Education’s Addison-

Wesley Professional division). They are also expected to have a complete background in

reading and programming in the C programming language. Students will not need to

prove relationship with a source license holder, as the course is based on the non-propri-

etary kernel sources released by the FreeBSD project.

The class consists of fifteen lectures on the FreeBSD kernel source code. The lec-

ture topics are:

1) Organization, overview of source layout

2) Kernel header files

3) System calls and file opening

4) Pathname translation and file creation

5) Vnode interface mechanics, writing to an FFS file

6) Write to a ZFS file

7) Opening, using, and closing locally connected sockets

8) User datagram protocol and routing

9) TCP algorithms

10) Fork, exit, and exec

11) Signal generation and delivery, scheduling

12) Virtual memory header files, file mapping

13) Page fault service, pageout processing

14) NFS client and server operation

15) Multiplexing with select, system startup

In addition to the fifteen lecture videos, you also receive a CD-ROM with a copy of

the FreeBSD kernel source covered in the lectures and a copy of the lecture notes.

Tiered pricing is available for companies, individuals, and students. For up-to-date

information on course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

18

FreeBSD Networking from the Bottom Up on Video

This course describes the FreeBSD networking stack. It is made up of a series of

lectures derived from tutorials given by George Neville-Neil.

The class currently consists of five lectures, though additional lectures are being

developed. The current lecture topics are:

1) Device Drivers: how to write and maintain network drivers in FreeBSD. By way of

example it uses the Intel Gigabit Ethernet driver (igb). The lecture covers the basic

data structures and APIs necessary to implement a network driver in FreeBSD. It is

specific enough that given a device and a manual, you should be able to develop a

working driver on your own.

2) The IPv6 Stack: an in-depth discussion and code walk-through of version 6 of the IP

protocols, describing and dissecting the paths that packets take from the driver layer

up to the socket layer of the network stack. The lecture covers the four paths packets

travel through the network stack: reception, transmission, forwarding, and error han-

dling.

3) Routing: packet forwarding and routing subsystems in FreeBSD. The routing and for-

warding code are the glue that keeps the networking stack together, connecting the

network protocols, such as IPv4 and IPv6, to their underlying data link layers and

making sure that packets are sent to the correct next hop in the network. Topics in

the lecture include the Routing Information Base (RIB), Forwarding Information

Base (FIB), and the systems that interact with them. Also covered are routing sockets

and the RIB/FIB APIs, the address-resolution protocol (ARP), Neighbor Discovery

(ND6), the Common Address Redundancy Protocol (CARP), the IP firewall and traffic

shaper control program (ipfw), and the packet filter interface (pfil).

4) Packet Processing Frameworks: The FreeBSD Kernel has several different packet pro-

cessing frameworks—software that is meant to transform packets but which are not

traditionally considered to be network protocols. It is these packet processing frame-

works that are often the basis for new products built with FreeBSD. This lecture cov-

ers all of the packet processing frameworks, including the Berkeley Packet Filter

(BPF), IP Firewall (IPFW), Dummynet, Packet Filter (PF), Netgraph, and netmap. It

discusses the appropriate use of each framework and takes a walk through the rele-

vant sections of each framework. Working examples of extensions to each frame-

work are given so that students can see how to build new systems with and around the

frameworks that are present in the kernel.

5) A Look Inside FreeBSD Using DTrace. DTrace is a modern system that gives soft-

ware developers the ability to add low overhead tracing that is always available to

programs that they are creating, modifying, and debugging. The desired tracing is

described and controlled with an advanced scripting language. This tutorial covers

the basics of DTrace, including basic and advanced uses. Using a set of worked

examples, students learn to add tracing to user space and kernel space systems. The

tutorial includes a set of short labs carried out on virtual machines that give the stu-

dents hands-on experience working with DTrace.

Each lecture may be purchased separately and comes with a copy of its course notes.

Tiered pricing is available for companies, individuals, and students. For up-to-date infor-

mation on course availability and pricing or to place an order, see the Web page at

http://www.mckusick.com/courses/

19

CSRG Archive CD-ROMs

Thanks to the efforts of the volunteers of the ‘‘UNIX Heritage Society’’ (see

http://www.tuhs.org) and the willingness of Caldera to release 32/V under an open source

license (see http://www.mckusick.com/csrg/calder-lic.pdf), it is now possible to make the

full source archives of the University of California at Berkeley’s Computer Systems

Research Group (CSRG) available.

The archive contains four CD-ROMs with the following content:

CD-ROM #1—Berkeley Systems 1978–1986

1bsd 2.9pucc 4.1.snap 4.2buglist

2.10 2bsd 4.1a 4.3

2.79 3bsd 4.1c.1 VM.snapshot.1

2.8 4.0 4.1c.2 pascal.2.0

2.9 4.1 4.2 pascal.2.10

CD-ROM #2—Berkeley Systems 1987–1993

4.3reno 4.4BSD-Lite1 net.1

4.3tahoe VM.snapshot.2 net.2

CD-ROM #3—Final Berkeley Releases

4.4 4.4BSD-Lite2

CD-ROM #4—Final /usr/src including SCCS files

Contrib admin games local sys

Makefile bin include old usr.bin

README contrib lib sbin usr.sbin

SCCS etc libexec share

The University of California at Berkeley wants you to know that these CD-ROMs

contain software developed by the University of California at Berkeley and its many con-

tributors.

The CD-ROMs are produced using standard pressing technology, not with write-once

CD-R technology. Thus, they are expected to have a 100-year lifetime rather than the

10–20 years expected of CD-R disks. The CDs are sold only in complete sets; they are not

available individually. The price for the 4-CD set is $99. The contents of the original four

CD-ROMs plus some additional early UNIX distributions is available on a single DVD

using 100-year lifetime M-DISC technology for $149.00. The archive can be ordered from

http://www.mckusick.com/csrg/

The compilation of this archive is copyright © 1998 by Marshall Kirk McKusick.

You may freely redistribute it to anyone else. However, I appreciate you buying your own

copy to help cover the costs that I incurred in producing the archive.

20

History of UNIX at Berkeley

Learn the history of the BSD (Berkeley Software Distributions) from one of the key dev el-

opers who brings the history to life, complete with anecdotes and interesting footnotes to

the historical narrative.

Part I is titled ‘‘Twenty Years of Berkeley UNIX: From AT&T-Owned to Freely

Redistributable.’’ The history of UNIX development at Berkeley has been recounted in

detail by Marshall Kirk McKusick in his chapter in the O’Reilly book Open Sources:

Voices from the Open Source Revolution and is now recounted in part one of this video. It

begins with the start of the BSD community at the University of California at Berkeley in

the late 1970s. It relates the triumphs and defeats of the project and its releases during its

heydays in the 1980s. It concludes with the tumultuous lawsuit ultimately settled in Berke-

ley’s favor, which allowed the final release in 1992 of 4.4BSD-Lite, an open-source version

of BSD.

Part II is titled ‘‘Building and Running An Open-Source Community:

The FreeBSD Project.’’ It tells the story of the independent development by

the FreeBSD project starting from the open-source release from Berkeley. The FreeBSD

project patterned its initial community structure on the development structure built up at

Berkeley. It evolved and expanded that structure to create a self-organizing project that

supports an ever growing and changing group of developers around the world. This part

concludes with a description of the roles played by the thousands of volunteer developers

that make up the FreeBSD Project of today.

Dr. Marshall Kirk McKusick’s work with UNIX and BSD development spans over

thirty years. It begins with his first paper on the implementation of Berkeley Pascal in

1979, goes on to his pioneering work in the eighties on the BSD Fast File System, the BSD

virtual memory system, and the final release of 4.4BSD-Lite from the University of Cali-

fornia Berkeley Computer Systems Research Group. Since 1993, he has been working on

FreeBSD, adding soft updates, snapshots, and the second-generation Fast Filesystem to the

system. A key figure in UNIX and BSD development, his experiences chronicle not only

the innovative technical achievements, but also the interesting personalities and philosoph-

ical debates in UNIX since its inception in 1970.

The price for the video is $19.95. The video can be ordered from

http://www.mckusick.com/history/

21

