
Own The Stack
FreeBSD from a vendor’s perspective

By: Antranig Vartanian & Faraz Vahedi

BSDCan 2022

id antranigv

- Antranig Vartanian

- Co-Founder & CEO @ illuria Security, Inc.

- Daemon @ Armenian BSD User Group

- Native Tongue: Elixir/Erlang, POSIX Shell

- Past: CTO, Systems Engineer

- Love: Unix and Film Photography

- Runs: Jabber.am

 Armenian Tech Forums

 Systems We Love -- Armenia

- Faraz Vahedi

- Systems Engineer @ illuria Security, Inc.

- Into Compilers, Maths, Physics, and UNIX

- Operating Systems: BSD and illumos fams

- Main Language: C

id kfv

https://antranigv.am https://kfv.io/

https://antranigv.am
https://kfv.io/

Agenda

- What we do
- Choosing an operating system for your appliance

- Why FreeBSD

- Development Flow
- Git(ea), Build(bot), Package Poudriere, Ship

- Path to vendorship
- Unforeseen issues and corresponding solutions
- "These are not the tools you are looking for" -- Obi-Wan Freebie
- Conclusion
- Q&A

What we do

We create virtual minefields inside the infrastructure to

Detect, Deceive, and Deter malicious actors.

illuria's deception technology uses decoys and lures to break the attackers'

decision cycle, forcing them to reveal themselves.

a.k.a Honeypots on Steroids!!!

Choosing an operating system

- Spoiler Alert: Most of the time it’s FreeBSD

- Unless: for embedded systems with specific drivers

- Unless: Team wants $TOOL, not available on FreeBSD

- Our needs:

- not PITA, always POLA

- commercial friendly (BSDL?)

- responsible community

- single source of truth

- easy to "replicate" and "own"

Choosing an operating system (cont.)

- Linux
- GPL → hard to modify, legally
- Changes blazingly fast → hard to maintain
- Divided community → hard to get proper and quick answers

- illumos
- Unknown to the majority of our team
- Very different than Linux and *BSDs → harder to teach

- FreeBSD
- We already knew the nuances…
- Centralized community → We know where to ask what
- Single solution for a single problem which has been around for years

Benefits of using FreeBSD (as a vendor)

- We came for the license, we stayed for the technology (and the community)
- All brilliant things are in the base

- ZFS
- DTrace
- Jails

- Many nice things are developed with base-in-mind, including but not limited to
- poudriere(8)
- vm-bhyve(8)
- dwatch(1)

- All good, BUT, easy to fork, and tricky to maintain, especially for a startup.

Disclaimers

It's a startup, so

- we're a team of 5 people working on everything
- we can't spend 500 USD/mo for a "build server"
- we can't wait hours till things compile
- we can’t afford giant resources
- we want to focus on our core problem

But it's also team of *BSD lovers, so…

These are our stories, we hope they help you :-)

Tech Stack | Software

- OS: FreeBSD (obviously)
- Programming Languages:

- Elixir/Erlang/OTP
- FreeBSD Shell
- JavaScript
- Oberon
- Rust
- C

- CI: BuildBot
- VCS: Git on Gitea
- Packaging: Poudriere
- Shipping: Poudriere + Scripts

Tech Stack | Infrastructure

- FreeBSD (obviously)
- Everything is a Jail

- We use jailer for Jail automation (we built it, open-sourcing soon!)
- Non-FreeBSD things (Linux, Windows) are in VMs

- We use bhyve with vm-bhyve
- "Server SSO" using NIS + NFS + AutoFS

- DON'T TRY THIS AT HOME. We love old things that Just Works™
- Everything is tunneled among multiple locations between multiple continents

- One of those locations (Armenia) is not FreeBSD-friendly (CDN-wise)

Development Flow

Development Flow; Git to Build

Development Flow; Our Typical Port

Development Flow; Update Port on Success

On success, buildbot changes the following user-defined macros in the port’s
Makefile and commits to the main branch:

-GIT_HASH=90c6a35b280734b72cef1509f44a5da75aadd765

-GIT_REVISION=27

+GIT_HASH=56a947ff8144d18fbbf719d002e7182aee830feb

+GIT_REVISION=28

Development Flow; Separation

- NO_BUILD=YES

- Skip the build step (man 7 ports)

- Clear separation of building and packaging

- Building is done by BuildBot

- Packaging is done by poudriere

Development Flow; Tarball to Package

Ports Tree: Why Are We Shaking?

Maintaining Ports Tree

- Option one: Fork FreeBSD's Ports tree and add your own stuff

- Pros: Single Ports tree to use internally

- Cons: You have to regularly pull your copy and maintain your Makefiles

- Best practice of usage: When your software relies on FreeBSD ports

- Option two: Have your own Ports tree and merge it with other trees

- Pros: Update other copies only when needed

- Cons: Need a reliable way to merge

- Best practice of usage: When your software is "standalone"

Merging Port Trees

Portshaker:

- Simple (and single) configuration
- Simple to run

echo 'cloning company ports tree'
/usr/local/bin/portshaker -u company
echo 'merging port trees'
/usr/local/bin/portshaker -m default
echo 'merging done!'
/usr/local/bin/poudriere bulk -f /root/company-devel \
 -j company-devel-130 -p default

Building & Packaging; Final thoughts…

We have, at this point

- CI that builds
- Poudriere that packages
- Everything automated

We need

- Package server (via HTTP)
- With authentication

pkg.conf with HTTP_AUTH

/usr/local/etc/pkg/repos/example.conf

example: {

 url: "http://pkg.example.com/{ABI}/devel",

 enabled: yes,

 env: { HTTP_AUTH: "basic:*:user0:thepassword" }

}

Release

If neither userland nor kernel is altered you do not need to build them to make an
image:

- poudriere-image(8) could be used for your ISO images with a little
hack[1]

- And a simple script could do the job for your VM images

[1] poudriere ISO/USB images are not meant to be installable, they are just live images. But it doesn’t
mean you cannot make them installable - we'll go over this in a bit…

ISO/USB images

- poudriere jail -c ... (it shall contain a kernel)
- Fetch distribution tarballs (base.txz, kernel.txz, etc.)
- Add tarball of your files[1] next to other distfiles
- Run make-manifest.sh from /usr/src/release/scripts to

update the MANIFEST file (beware it prints to stdout -
read the code, it’s small)

- Run poudriere-image(8) with the following options:
-t iso, -j <jail_name>, -c <directory_to_copy>[2]

-n <iso_name> -h <hostname>

[1] Custom Dist Structure
[2] Overlay Structure

(distribution files are required to have an installer)

Example for your custom tarball

custom/
 └── usr

└── local
 ├── etc
 │ └── pkg
 │ └── repos
 │ └── custom.conf
 └── some_dir
 └── some_subdir
 ├── file_a
 └── file_b

The overlay structure

overlay/
└── usr

└── freebsd-dist
 │ ├── MANIFEST
 │ ├── base.txz
 │ ├── kernel.txz

│ ├── custom.txz
│ └── …
└── local

└── …

Distfiles for 13.1-RELEASE:
https://download.freebsd.org/releases/amd64/13.1-RELEASE/

VM Images (ZFS)
- Create a file of a specific size
- Create a memory disk (mdconfig)
- Partition it (gpart) [1]
- Create a zpool
- Create datasets and set their properties [2]
- Take care of distributions and configuration files

(bsdinstall distfetch, distextract, and config could be used)
- Make your changes
- Export the pool
- Detach the memory disk

[1] Partitioning
[2] Datasets

Special thanks to bofh@ for his help

Partitioning the memory disk

> gpart create -s gpt ${MD}
> gpart add -a 4k -s 512k -t freebsd-boot ${MD}
> gpart add -a 4k -t freebsd-zfs -l gpt_root ${MD}
> gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ${MD}

ZFS Datasets and their properties (p.1)

CAUTION: Make sure you’re either on UFS or your desired pool name for the
image differs from your system’s.

NOTE: swap volumes are not discussed - consult manuals if they are required.

> zpool create -R /mnt zroot /dev/${MD}p2
> zfs create -o mountpoint=none zroot/ROOT
> zfs create -o mountpoint=/ zroot/ROOT/default
> zfs create -o mountpoint=/tmp -o exec=on -o setuid=off

zroot/tmp
> zfs create -o mountpoint=/usr -o canmount=off zroot/usr

ZFS Datasets and their properties (p.2)

> zfs create zroot/usr/home
> zfs create -o setuid=off zroot/usr/ports
> zfs create zroot/usr/src
> zfs create -o mountpoint=/var -o canmount=off zroot/var
> zfs create -o exec=off -o setuid=off zroot/var/audit
> zfs create -o exec=off -o setuid=off zroot/var/crash
> zfs create -o exec=off -o setuid=off zroot/var/log
> zfs create -o atime=on zroot/var/mail
> zfs create -o setuid=off zroot/var/tmp
> zpool set bootfs=zroot/ROOT/default zroot

VM Images (UFS)

Building a UFS image is easier than both ISO and ZFS images.

$ poudriere image -c <overlay> -n <name> -h <hostname>\
-f <pkg-list> -j <jail> -w <swap> -b -s <size> -t usb

“-b” is used to place the swap first to allow the primary partition to be grown on
demand, and “-f <pkg-list>” specifies a list of packages to be pre-installed. For
the latter, you should have used poudriere-bulk(8) first.

FreeBSD Release; HOW WE DO IT

- Unmodified Kernel and User-land

- poudriere-image(8) for ISO/USB images

- Custom dist files, custom.txz

- Simple overlay

Example for our custom tarball

custom/
 └── usr

└── local
 ├── etc
 │ └── pkg
 │ └── repos
 │ └── custom.conf
 └── company
 └── latest
 ├── packageX-latest.tgz
 └── packageY-latest.tgz

The overlay structure

├── etc
│ └── rc.local
└── usr

├── freebsd-dist
│ ├── MANIFEST
│ ├── base.txz
│ ├── kernel.txz
│ └── custom.txz
└── local

 └── bin
 └── custom_installer

rc.local

echo "Please choose the appropriate terminal type for your system."
echo "Common console types are:"
echo " ansi Standard ANSI terminal"
echo " vt100VT100 or compatible terminal"
echo " xtermxterm terminal emulator (or compatible)"
echo " cons25w cons25w terminal"
echo
echo -n "Console type [vt100]: "
read TERM
TERM=${TERM:-vt100}
export TERM

/usr/local/bin/custom_installer

/usr/local/bin/custom_installer

echo "starting installer"
#SET HOSTNAME
exec 3>&1; _hostname=$(dialog --backtitle "LureOS Installer" --inputbox "Set \
Hostname" 0 0 2>&1 1>&3);
exec 3>&-;
…
#SET DISK
…
cat <<EOF > /tmp/install.script
DISTRIBUTIONS="kernel.txz base.txz custom.txz"
export ZFSBOOT_VDEV_TYPE=stripe
export ZFSBOOT_DISKS=${_disk}
…
#!/bin/sh
sysrc hostname="${_hostname}"
…
EOF
bsdinstall script /tmp/install.script

/usr/local/bin/custom_installer

echo "starting installer"
…
cat <<EOF > /tmp/install.script
…
#!/bin/sh
sysrc hostname="${_hostname}"
sysrc sshd_enable="YES"
REPOS_DIR="/etc/pkg/" pkg bootstrap -y
pkg add /usr/local/company/latest/packageX-latest.tgz
sysrc mydaemon_enable="YES"
passwd root
…
EOF
bsdinstall script /tmp/install.script

FreeBSD Release; VM Images

- truncate -s 10G disk0.img ; mdconfig -f disk0.img
- copy "generated" install.script

- export ZFSBOOT_DISK=md0
- Hardcode some values

- bsdinstall script install.script
- Host shall be using UFS

- bsdinstall exports all zpools, for some reason…

Unforeseen Issues & Corresponding Solutions

- disk0.img size: used vs real

- poudriere-image(8) requires a kernel

- qemu-img from qemu-tools

- The Jail running poudriere requires it

too!

These are not the tools you are looking for

https://github.com/freebsd/poudriere/wiki/poudriere-image.8

https://github.com/michaeldexter/occambsd

https://github.com/michaeldexter/imagine

https://github.com/5u623l20/vultr-freebsd-zfs

/usr/libexec/bsdinstall

/usr/share/bsdconfig

https://github.com/freebsd/poudriere/wiki/poudriere-image.8
https://github.com/michaeldexter/occambsd
https://github.com/michaeldexter/imagine
https://github.com/5u623l20/vultr-freebsd-zfs

Caring := Sharing

- src
- Good testing
- Requires time
- Large change? make it gradual
- Follow up

- Ports
- Ports are for everyone, not just for $WORK

- Docs
- Apologies, we've been lazy :-)

That’s all folks!
Thanks
Q&A

{av,kfv}@illuriasecurity.com
illuria.com

