FreeBSD containers In
production

(a NSFW guide)

Yan Ka, Chiu

Who am |

 FreeBSD user for 6-8 years
 B.A. In Mathematics
* Functional programming with Scala / Haskell / Erlang

e System programming with C / C++ / Rust

What do | do

* Live streaming + e-commerce company
 Backend
 DevOps
* Basically everything except frontend

e FreeBSD on AWS

Container(?)

» "Containers are lightweight packages of your application code together with
dependencies such as specific versions of programming language runtimes
and libraries required to run your software services." -- Google

Container

 Environmental context of processes and services
* file system (files and packages)
* network (ip address and routes)
* device nodes
* SYSV IPC

* privileges

Why container

* (Generalized Continuous integration and continuous delivery
* Observability (trace by jid)
e Scalability (up and down)

* Privilege management

Container on FreeBSD

Contexts

* Root filesystem

* devfs ruleset

e Jail parameters
* SysSv message queues
e Sysv shared memory

e syscitl

Container on FreeBSD

Base tools / utilities

e Jail (3)

e Jail (8)
 utility to manage jail(s)
* using jail(3)

 (fake) life cycle management

Existing utilities

o Bastille
* |ocage
e Pot

* runj

Bastille

* Pros
« /FS is optional
» Bastillefile (composable template/receipt)
* Great Maintainability
« Cons
e Jalls are state preserving

* "Dead" jail awareness is lacking

locage

* Pros
* Plugins (Declarative Template)
 Can manage stopped jail
 Cons

 Require ZFS

e Jalls are state preserving

Pot

* Pros:
» Great integration with Consul and Nomad (Orchestration)
» Basically what you would want.

e Cons:

 Require ZFS

So what do we actually use?

Why do we build our own tool

 /FS on Root is not available on AWS
 Want declarative image™ definition / manifest
 Want image registry

e Bonus: Jail over NFS

Container Image

Requirement

o Distributable
 Should not be considered trusted
» Self-Documented, e.g. usage and parameters

* Privileges should not be grant automatically

Container Image

Format

e JSON manifest

* Filesystems layers store as OCI compatible archive

* Privileges and requirements must explicitly documented
e devfs rules requirements
e ports it provides
* SYSV IpPC

e etc...

Container Image

Privilege / security model

 Host policy

 Container can be spawned from an image without manual intervention if
and only if the all requested privileges permit by host

 Manual override is possible

Container Image

devfs ruleset handling

 Host defined open rules and close rules
 Host defined upper limit of usable rules
e jail_devfs_rules := host_open_rules || img_requested_rules || host_close_rules

 Housekeeping daemon keep track of the mappings between rules and ruleset
I

Container Image

Creating image

* Only happen on ZFS enabled nodes
* Abuse ZFS
 /FS clone staged file system of the parent image
* Apply changes, usually via a heavily modified Bastillefile

e Create file system layer from ZFS diff output

Container root over NFS

 Remotely mount container's root via NFS
e union mount /var

* run it like a normal jall

