
Yan Ka, Chiu

FreeBSD containers in
production
(a NSFW guide)

Who am I

• FreeBSD user for 6-8 years

• B.A. in Mathematics

• Functional programming with Scala / Haskell / Erlang

• System programming with C / C++ / Rust

What do I do

• Live streaming + e-commerce company

• Backend

• DevOps

• Basically everything except frontend

• FreeBSD on AWS

Container(?)

• "Containers are lightweight packages of your application code together with
dependencies such as specific versions of programming language runtimes
and libraries required to run your software services." -- Google

Container

• Environmental context of processes and services

• file system (files and packages)

• network (ip address and routes)

• device nodes

• sysv ipc

• privileges

• ...

Why container

• Generalized Continuous integration and continuous delivery

• Observability (trace by jid)

• Scalability (up and down)

• Privilege management

Container on FreeBSD
Contexts

• Root filesystem

• devfs ruleset

• Jail parameters

• Sysv message queues

• Sysv shared memory

• sysctl

Container on FreeBSD

• Jail (3)

• Jail (8)

• utility to manage jail(s)

• using jail(3)

• (fake) life cycle management

Base tools / utilities

Existing utilities

• Bastille

• Iocage

• Pot

• runj

Bastille
• Pros

• ZFS is optional

• Bastillefile (composable template/receipt)

• Great Maintainability

• Cons

• Jails are state preserving

• "Dead" jail awareness is lacking 

Iocage
• Pros

• Plugins (Declarative Template)

• Can manage stopped jail

• Cons

• Require ZFS

• Jails are state preserving 

Pot
• Pros:

• Great integration with Consul and Nomad (Orchestration)

• Basically what you would want.

• Cons:

• Require ZFS

So what do we actually use?

Why do we build our own tool

• ZFS on Root is not available on AWS

• Want declarative image* definition / manifest

• Want image registry

• Bonus: Jail over NFS

Container Image

• Distributable

• Should not be considered trusted

• Self-Documented, e.g. usage and parameters

• Privileges should not be grant automatically

Requirement

Container Image
Format

• JSON manifest

• Filesystems layers store as OCI compatible archive

• Privileges and requirements must explicitly documented

• devfs rules requirements

• ports it provides

• sysv ipc

• etc...

Container Image
Privilege / security model

• Host policy

• Container can be spawned from an image without manual intervention if
and only if the all requested privileges permit by host

• Manual override is possible

Container Image
devfs ruleset handling

• Host defined open rules and close rules

• Host defined upper limit of usable rules

• jail_devfs_rules := host_open_rules || img_requested_rules || host_close_rules

• Housekeeping daemon keep track of the mappings between rules and ruleset
id

Container Image
Creating image

• Only happen on ZFS enabled nodes

• Abuse ZFS

• ZFS clone staged file system of the parent image

• Apply changes, usually via a heavily modified Bastillefile

• Create file system layer from `ZFS diff` output

Container root over NFS

• Remotely mount container's root via NFS

• union mount /var

• run it like a normal jail

