The “other” FreeBSD optimizations used
by Netflix to serve video at 800Gb/s from
a single server

EuroBSDCon 2022

Or..

“How badly can | break Netflix’s performance
when | disable optimizations?”’

EuroBSDCon 2022

Motivation:

e Since 2021, Netflix has been able to
serve almost 800Gb/s of TLS encrypted
video traffic from a single server.

e How much are the various optimizations
made to FreeBSD over the years
helping?

Note: Most of the optimizations
discussed in this slide deck were done
outside of Netflix, by members of the
FreeBSD community

EuroBSDCon 2022

IF I HAVE SEEN FURTHER,
IT IS BY STANDING

ON THE SHOULDERS
OF GIANTS.

- ISAAC NEWTON

REMOVING ONE
OPTIMIZATION

...CAN MAKE
PERFORMANCETUMBLE DOWN

Netflix Video Serving Workload

e FreeBSD-current

e NGINX web server

e Video served via sendfile(2) and
encrypted using software kKTLS

Netflix 400G Video Serving Hardware

e AMD EPYC 7502P ("Rome”)
o 32 cores @ 2.5GHz
o 256GB DDR4-3200
m 8 channels
m ~150GB/s mem bw
e Or ~1.2Tb/s in networking units
o 128 lanes PCle Gen4
m ~250GB/s of IO bandwidth
e Or ~2Tb/s in networking units

Netflix 400G Video Serving Hardware

o 2x Mellanox ConnectX-6 Dx
o Gen4 x16, 2 full speed 100GbE ports per NIC
m 4 x 100GbE in total
o Support for NIC kTLS offload
o 18x WD SN720 NVME
o 2TB
o PCle Gen3 x4

Measurement Metrics

e Measure the maximum stable bandwidth of a

configuration
e Use this bandwidth, and the CPU utilization, to
arrive at a new “Gb/s per Percent CPU” metric.

Optimal Configuration

e Dataflow using NIC kTLS & sendfile

e All VM and NIC optimizations enabled

e Baseline Bandwidth: 375Gb/s @ 53% CPU
o Or 7.1Gbs/pcpu

| ngx_htﬁp_pr..
@ ngx_http_pr..
ngx_http_pr..
| vm_pa..
. vm_pag..

vn_sendfile

il]
amd64_syscall

PMC Flame Graph

i B I

| N S .
tcp_rack 21g22pllr. tcp.. @

I
| tcp_rack_21q22p11_ctf process_inbound_raw
|tcp_rack_21g22pll_ctf do_queued segments

mix5_eq_int

tcp_lro_flush i
| pf.. tcp_lro_flush_all
| @ 1§ mixSe_rx_cq_comp &
[pi | [imixSieg completion
‘tep_rack 21..

tcp_run_hpts
userret

mix5_msix_handler

Section 1:

Sendfile & KTLS

Netflix 400Gb/s Video Serving Data Flow
When not using sendfile, data is Bulk PR _>

copied to userspace & encrypted

: - ;'; - Metadata
by the host CPU, then copied back 5- a-E
Ep S
to the kernel 'H =
CPU
400Gb/s == 50GB/s
AN
~400GB/sec of memory bandwidt Q § (89
and ~64 PCle Gen 4 lanes are |2 1° 12 1° §
needed to serve 400Gb/s % % 3 | m
T=ai—u -|

— 50GB/s I

Disks Mem ory = l\IIIII{IIIIIIIIII il(lll&lllllllll i

LUl
i
I

What is sendfile?

e Specify a file and a socket to send it on

e Kernel sends directly from the page cache
o No data is copied to userspace
o Nginx never sees the data it is sending

Problem: Disk reads can block
sendfile

e \When an nginx worker is blocked, it
cannot service other requests

e Solutions to prevent nginx from blocking
like aio or thread pools scale poorly

Solution: Asynchronous sendfile

e sendfile() becomes “fire and forget”

e Empty buffers are appended to the TCP
socket buffer. TCP stops when it sees
an empty buffer.

e \When disk read completes, disk
interrupt handler informs TCP it is ready
to send

Asynchronous sendfile

Socket Buffer

T

o (I
|

N NGINX

Asynchronous sendfile

Socket Buffer

T

o (I
|

“~ N NGINX

Asynchronous sendfile

$88888888888

Socket Buffer

T

J |
o [l
AT

N NGINX

Asynchronous sendfile

EEEEEEEEEEER

Soc ke,{Bff

T

o (I
|

N NGINX

Asynchronous sendfile

EEEEEEEEEEE

Soc ke,{Bff

i

|
|
a I

N NGINX

Asynchronous sendfile

BEEEEEE:EOEE

Socket Buffer

i

|
|
a I

N NGINX

Asynchronous sendfile

Socket Buffer

T

o (I
|

N NGINX

What is kKTLS?

e Bulk crypto is moved into the kernel
o Handshakes are still done in userspace
o Required for async sendfile based dataflow with
no copies or context switches.
e Doing crypto in the kernel almost quadruples CPU
efficiency
e Originated at Netflix

Netflix 400Gb/s Video Serving Data Flow
When not using sendfile, data is Bulk PR _>

copied to userspace & encrypted

: - ;'; - Metadata
by the host CPU, then copied back 5- a-E
Ep S
to the kernel 'H =
CPU
400Gb/s == 50GB/s
AN
~400GB/sec of memory bandwidt Q § (89
and ~64 PCle Gen 4 lanes are |2 1° 12 1° §
needed to serve 400Gb/s % % 3 | m
T=ai—u -|

— 50GB/s I

Disks Mem ory = l\IIIII{IIIIIIIIII il(lll&lllllllll i

LUl
i
I

Netflix 400Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU. Medata

400Gb/s == 50GB/s = .
L &

~200GB/sec of memory bandwidt CPU
and ~64 PCle Gen 4 lanes are
needed to serve 400Gb/s

n
~~
m
O
o
(9]

50GB/s

Il

i
Ll
i}

] p—]

I

50GB/s I

BIEYS

Netflix 400Gb/s Video Serving Data Flow

Using sendfile and software kTLS,
data is encrypted by the host CPU.

400Gb/s == 50GB/s = .
L &

~209)GB/sec of memory bandwidttx CPU I

and ~54 PCle Gen 4 lanes are
needed to serve 400Gb/s ‘Il I

2

4\
o
|o
()
(g}

i)
LI

] p—]

I

50GB/s I

i
I

BIEYS

Bulk Data q

Metadata

Netflix 400Gb/s Video Serving Data Flow

Using sendfile and NIC KkTLS, data

is encrypted by the NIC.

400Gb/s == 50GB/s

1111
» -
W ~
1

nlw-
||‘i|-

~100GB/sec of memory bandwidth | CPU
and ~64 PCle Gen 4 lanes are
needed to serve 400Gb/s

T
il

— |
—
.

BIEYS

50GB/s I

ey W
50GB/s - O
AL

Memory H

Bulk Data q

Metadata

Disable KTLS (and async sendfile)

e | was expecting just elevated CPU and memory
bandwidth
o Max BW is ~40Gb/s with 100% CPU
o Bottlenecked on lock contention on aio queues
m Nginx uses aio to avoid blocking when
sending files without async sendfile.

Disable KTLS (and async sendfile)

PMC Flame Graph

| lock_delay
__mtx_lock_sleep

mtx_lock_sleep mtx_lock_sleep

ain
S 2 md64_syscall

Disable KTLS (and async sendfile)

o Attempt 2: Use nginx thread pools
o 90Gb/s, 80% CPU
o A lot of time spent accessing memory
m Copy out file data from kernel to ngix
m Crypto in userspace SSL
m Extra memcpy in nginx for SSL
m Copy in data to kernel from nginx

Disable KTLS (and async sendfile)

Gbs/pcpu

in.
0..

| memcpy
ngx_http_write_fil..
ngx_http_logstat_body f..
ngx_http_loghot_body filter

PMC Flame Graph

uiomove_from.. ¥
vn_read_from_obj

n;x__wori:er_process__cycle ‘ 5 | vn_w_?ault
Ngx_spawn_process @3 dofileread

ngx_master_process_cycle v, 5
EYSIUES sys_pread
VTR 11| 0 _start

i
s 1
= tcp_rack_2..
m_uiotom.. tcp_usr_send
§ | sosend_generic
§ soo_write

|
copyin |
uiomov..

sys_write

lock_..
mtx..

vm_page.: |

vm_page..

allocbuf

| buf_recycle

tep_lro_flush

Disable sendfile (but use kTLS)

e /5Gb/s, 80% CPU
o VM lock contention
o A lot of time spent accessing memory
m Copy out file data from kernel to ngix
m Extra memcpy in nginx for SSL
m Copy in data to kernel from nginx
m Crypto in-place in kernel

Disable sendfile (but use kTLS)

Gbs/pcpu

| memcpy

| e M i
| 'ngx_http_loghot_body ..

Wi ngx_output_chain
| ngx_http_copy_filter
‘ngx_http_output filter
ngx_http_writer

]] ngx_http_copy_thread_event ..

- [exthread poolhandler

1 ngx_kqueue_process_events

ngx_process_events_and_timers

ngx_worker_process_cycle

PMC Flame Graph

ffs_read GAGMOMIGHIN

| MOPIREN VOP_READ_PGCACHE .. |

| vn_read |

| vn_io_fault_doio w.]
u kt.. m_uiotom.. @l

|l sosend_generic

| soo_write

| dofilewrite

J tcp_rack 21q22..
|} tcp_rack 21q22..

mix5e_rx_cq_comp

0160 80 .
(IR crypto_di..

ktls_ocf.. [KtISIocf ..

1) E——

ktls_work_thread

Disable sendfile (but use NIC kTLS)

e 95Gb/s, 80% CPU
o VM lock contention
o A lot of time spent accessing memory
m Copy out file data from kernel to ngix
m Extra memcpy in nginx for SSL
e Even though it is not doing encryption, it
still copies into a 16k buffer
m Copy in data to kernel from nginx

Disable sendfile (but use NIC kTLS)

Gbs/pcpu

PMC Flame Graph

vm..
copyout_smap_std ' [l
8 viomove_fromphys |l i 3
| vn_read_from_obj § tcp_rack_21q22pll..
OP_READ_PGCACHE_APV | @ tcp_lro_flush

%_cq_con
ngx_process_events_and_timers - vn_io_faultl 1 B WPE| mix5_cq_completion
ngx_worker_process_cycle [5 generic allo.. | mix5_eq_int

ker.. (@l) dofileread |
B . [kern_preadv tcp_run_h,
[sys_um.. sys_pread i userret

| _start amdé4_syscall

ISA-L

e Intel Intelligent Storage Acceleration Library
o |In ports as security/isal-kmod
o Works well on AMD CPUs as well as Intel

e Highly optimized accelerated AES block ciphers
o Has options to use non-temporal instructions,
which avoids read-modify-write cache miss
when storing crypto results

Enable Sendfile & KTLS, but disable
ISA-L crypto

e 180Gb/s, 80% CPU
o CPU / Memory bound in aesni crypto
o Unlike ISA-L
m \We take cache misses when storing
encrypted data
m Data is copied

Enable Sendfile & KTLS, but disable
ISA-L crypto

PMC Flame Graph

memmove_

I

|| 'tcp_rack_21q22p11_rack_do_:

|8 tcp_rack 21q22p11_ctf proces..
: 22511 2

\uiomove fr., | ‘uiomove fr.
] m_unmapped. § [EMfeW m_unmapped..
|| queu.. | ‘

AES_GCM _encrypt [GiiPEGEN m_copydata

5 2] | aesni_process
I ngx_kqueue_proces.. 18 15 | EPOEEPEEH crypto_dispatch
| ngx_process_event.. | 5 | . i ktls_ocf_dispatch

3 S [TSRS <t!s_ocf tis13_aead_encrypt
Ngx_spawn_process .. ktls_encrypt_record
ngx_master_process..

main sys_sendf.. | user.. ktls_work_thread
|| _start

Enable Sendfile & KTLS

e 240Gb/s, 80% CPU
o CPU / Memory bound in ISA-L crypto

Enable Sendfile & KTLS

Gbs/pcpu

| ngx htt..

I

8 nox_http.. @B |

ngx_worker_process._..
ngx_spawn_process
ngx_master_process_..
main

| _start

amd64_syscall

PMC Flame Graph

T
| ni

BEE Bit. jthrackizint.

I8 |tcp_rack_21g22p11_rack_do_segmen..
#l tcp_rack_21g22p11_ctf process_in..

= .
53 tcp_lro_flush

mlxs_cq_co}npletion

mix5_msix_handler
Ikpi_irq_handler

ktls_ocf dispatch

5 crypto_dispatch

ktls_ocf tls13_aead_encrypt

Section 2:

Virtual Memory
Optimizations

UMA VM Page Cache

e A per-cpu pool of free pages that can be accessed
locklessly

e Managed via UMA (Universal Memory Allocator)

e Only works for free pages, not pages that are
recycled into the inactive or active page queues

Disable UMA VM Page Cache

e 60Gb/s 95% CPU
e Severe lock contention on VM free page queue

UMA VM Page Cache

Gbs/pcpu

PMC Flame Graph

lock_delay
mix_lock_sleep
vn ne
[| ! zone_free_item
vm_page_release
§ sendfile_free_mext_pg
mb_free_extpg

|
| tep_rack_21g22pl11_ctf do_queued_segments

e |
||§] tcp_lro_flush
[120

oc
__mtx_lock_sleep

vm_page_alloc_domain_after

vm_page_grab_pages
vm_page_grab_pages unlocked

vn_sendfile
1| sys_sendfile it d_loc
~ amd64_syscall fork_exit

VM Batch Queues

e A way to free multiple pages to a page queue with
a single lock

Disable VM Batch Queues

e 280Gb/s 95% CPU
e Severe lock contention on VM inactive page queue

VM Batch Queues

Gbs/pcpu

V.. __mtx_lock_sleep
vm_pa..
|vm_pa..}] vm_page_pgstate_commit
vm_pag..

PMC Flame Graph

§ tep_h.. mix5_msix_handler
ftcp_ru..
| sys_sendfile EEEEERN ithread _loop

EE 2md64_syscall

SF NOCACHE

e SF NOCACHE causes data sent by sendfile() to
be freed directly, and to not linger on the inactive
page queues.

e Used when we don't expect data to be re-used.

Disable SF NOCACHE

e 120Gb/s at 55% CPU
o Lock contention on the inactive page queue
o Nginx pauses cause clients to run away

Disable SF NOCACHE

Gbs/pcpu

no batch queue no SF_NOCACHE optimal

PMC Flame Graph

lock_delay
__mtx_lock_sleep

vm_page_pgbatch_submit
—

vm_page_unwire_managed
sendfile_free_mext_pg

_free
||tcp_rack 21q22p11_rack_do_segment_nounlock
J tcp_rack_21q22p11_ctf process_inbound_raw

B] tcp_rack_21q22p11_ctf do_queued_segments
B tcp_lro_flush

tcp_lro_flush_all = I
| 1| - (7
imixSZeqzeompletion
| S ok _delay B |

_mtx_lock:sleep _rw_wlo.. 3
Vim_pageout_scan_inactive

I
|# 888 mix5_eq_int

& mlx5:ms?x_handler
Ikpi_irq_handler 5
ithread_loop vm..vm_pageout helper =I

amd64_syscall fork_exit

16KB Pages (arm64)

e Arm64 recently added support for 16K pages
e A lot of our kernel time is spent in page
management.
e Large performance improvement:
o 345Gb/s @ 80% CPU -> 368Gb/s @ 66% CPU
m Ampere Q80-30, 128GB RAM, CX6-DX

16K Pages

Ampere Q80-30 Gbs/pcpu

PMC Flame Graph

Vi,
vm_pag..
| | vm_page..
vm_page. release vm.

= NN , %
IBl noxht. |} mb_free_extpg [] | ip..
‘ L N || e i t. |1 -
| B noxhttp_handler | | B 1 SIS U5 | €| 09 e
B0 § noxhttpproce.. 1 |)
ngx_http_proce.. = i tcp_lro_flush ” |
.. T0/ngx_http_proces.. ng.. | PSS m_. | @ I8 &
| mixSe_rx_cq_comp 0 9. | | | vm_pa..
| ngx_process_events_and_timers filXSECaICOmpIStom XPt.. 10 B oe
ngx_worker_process_cycle - mix5_eq_int Xpt: | -: Hl" " vm_page..
ngx_spawn_process (IO e ST I8 | | §vn_sendfile
ngx_master_process_cycle Ikpi_irg_handler v tcp_hpts_thread cpu.. il -|||.__1
T ithread_loop. 7 sche.. i vm.. [doCel0
__start

I
i
§
8
a8
&
1
V..
i
W

| | ndf

| =
[] | | mb_free e..
8

n.. ngx_http_co..

|
ngx_http_handler I | L >

o

ip..
BfI tcp_lro_flush_all
| mixSe_rx_cq_comp
n

ngx_master_process_cycle Ikpi_irq_handler

mafreeminl |s..
JBB | tep_rack 21q22p10_rack_pro

PMC Flame Graph

sys_sendfile

@ userret

Section 3:

Network Stack
Optimizations

TCP Large Receive Offload (LRO)

e LRO aggregates multiple received packets from the
same TCP connection
e |t reduces trips through the network stack
o This reduces connection lookups, lock
acquisitions and releases, decisions about
when to send TCP acks, etc.

Disable TCP Large Receive Offload

e 330G 65% CPU
o Health limited by NIC drops, clients go away

TCP Large Receive Offload

Gbs/pcpu

™
A

NETFLIX

RSS accelerated LRO

Connection 0 Connection 0

Connection 255
Packet 2

Connection 255
Packet 3

Connection 255

Packet 0 Packet O
Connection 1 Connection 0
Packet 0 Packet 1
Connection 2 Connection 0
Packet 0 Packet 2
Connection 3 * Connection 0
Packet 0 S O RT Packet 3
Connection 4 Connection 1
Packet 0 Packet O
Connection 5 Connection 1
Packet 0 Packet 1

@ o

() ®

@ ®

Packet 3

Disable RSS accelerated LRO

o 365G 70% CPU
o Health limited by NIC drops, clients go away
o Basically the same efficiency as no LRO

RSS accelerated LRO

Gbs/pcpu

™
A

TCP Large Send Offload (TSO)

Like LRO, we reduce the number of trips through
the network stack.

Rather than sending 2 (or 8 or 43) packets to the
NIC, we send one. NIC breaks (segments) it into 2
(or 8 or 43) packets on the wire.

Avoids having to allocate headers for each, look up
ethernet addresses, and interact with NIC hardware
for each packet

TSO Disabled

e 180G 85% CPU
o Needed to disable IRQ coalescing to avoid
transmit drops
o A lot more time spent in network related
functions.

TCP Large Send Offload (TSO)

PMC Flame Graph

|
@8 mixse..
| mix5e_xmit
|
8
|

| | 'tcp_rack_21q22p11_ctf process inbound_raw
\f 'tcp_rack_21q22pl1_ctf_do_queued_segments tcp_hptsi

- |‘ ‘ e
noxz Bl | B _rack _ctf_do_aq |
Ingx_ 1 1 l tcp_run_hpts s r—
5 I I m_freem

mix5e_rx_cq_comp

8 fp_hp.. mix5_msix_handler

[ngxspawn_... | [V

ngx_master.. |u_|tcp ru.. |Ikpi_irg_handler
main 8l sys_sen.. JUSEffét ithread_loop

_start @mdeasyscall

Disable TSO and LRO

e 170G 85% CPU
o Needed to disable IRQ coalescing to avoid
transmit drops

TCP Large Send Offload (TSO) and
LRO

PMC Flame Graph

ether_outpu
[ether_output
ip_output_send |
Jploutput
tcp_rack_21q22pll_rack

tcp_rac..
. 2 q22p11_rack_

| tp_rack_21q22p11_rck_do_s..

tcp_input_with_port _rack_
tcp_input_with_port

tcp_input
ip6_i ip_input
metisr_dispatchsrc
2
_

ether_demux

mix5e_rx_cq_comp
mix5_cq_completion
mix5_eq_int

g |
@i
xaworkes| | 10 | fteprac..
Ngx_spaw. - v.. § |tcp_hptsi mix5_msix_handler
ngx_mast.. [l vn_sen o i_irg_hz
main Bl sys_se.. |[USEeEN
_start amdé4_syscall B
0t |

But walit, there’'s not ... more..

e 800Gb prototype sitting on datacenter floor due to
shipping exception & '
e Something to talk about e seens

neXt year? ursday, September 16, 2021 by end of day

800G Prototype Details

Dell R7525

2x AMD EPYC 7713 64c / 128t (128c / 256t total)
3x XxGMI links between sockets

512 GB RAM

4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
16x Intel Gen4 x4 14TB NVME

Initial Results: 420Gb/s

e Ran in 1NPS mode
e Network Siloing mode

e CPUs mostly idle
o AMD guessed that xGMI was down-linking to x2
o Set xGMI speed to 18GT/s and forced link width to

x16, and disabled dynamic link width management

Results with DLWM forced: 500Gb/s

e Ran in 1NPS mode

e Network Siloing mode
o NVME data DMA'ed to NIC's NUMA Node
e XGMI link usage very uneven:
o 15GB/s, 4GB/s and 2GB/s
o Turns out that NVME is not evenly distributed by

|O Quadrants
o Even hashing of cross-socket to xGMI depends on

evenly distributed IO

How to Improve xGMI Hashing

e Hashing based on device doing DMA
o NVME is very uneven
o NICs are much less uneven
o “Network Siloing” normally does DMA from NVME
to remote node, local to NIC
e Flip things, and do DMA from NVME to local buffers
e The NICs are doing DMA across xGMI

Results with local DMA to NVME
node: 670Gb/s

e Much more even xGMI hashing:

o 10/10/7 GB/s

e Problematic because:

o Daemon that “locks” content into memory is not
NUMA aware & can lead to page daemon
thrashing.

o Still pressure on xGMI links

Disk centric siloing

Associate disk controllers with NUMA nodes
Associate NUMA affinity with files

Associate network connections with NUMA nodes
Move connections to be “close” to the disk where
the contents file is stored.

After the connection is moved, there will be O
NUMA crossings for bulk data.

Disk centric siloing problems

e No way to tell link partner that we want LACP to
direct traffic to a different switch/router port
o So TCP acks and http requests will come in on

the “wrong” port

e Moving connections can lead to TCP re-ordering
due to using multiple egress NICs

e Some clients issue http GET requests for different
content on the same TCP connection

Disk centric siloing problems

e Moving NIC TLS sessions is expensive
o Session will be established before content
location is known
o Once content location is known, crypto state
needs to torn down on the original egress NIC
and re-established on the NIC close to the
media file.

Disk centric siloing problems

e Affinities are wrong for most things

o Nginx worker accepted the connection on the
NUMA node near the ingress NIC, so all sends
on the socket will originate from the wrong
node.

o TCP/IP, ktls, etc, data structures allocated on
node near ingress NIC

o Incoming TCP acks will be handled on ingress
NIC

o TCP pacing done by pacer on “wrong” node

Disk centric siloing problems

e Network Siloing: Each connection hashed by LACP
hash over |IP/port.
o Hundreds of thousands of unique IP/port combos
o sharding of conns to NUMA domains is nearly

perfect

e Disk Siloing:
o Each connection is hashed by content location
o 8 to 32 drives considered
o Sharding is almost always uneven

Disk centric siloing problems

e Uneven sharding can lead to hot NUMA nodes
o Hot node constantly paging due to lack of RAM
o Hot node NICs overloaded, leading to output drops
while cold node’s NICs are underused

“Disk Centric Siloing” Results:
731Gb/s

e Much less xGMI traffic
e Limited by NIC output drops, not CPU.
e Cause of drops is now largely due to:
o Page daemon interfering with nginx on popular
node
o Uneven loading on NICs due to content popularity
differences. (NICs on popular node doing 94Gb/s,
others doing 89GDb/s)

