
Advanced ptrace() Usage on 
FreeBSD

John Baldwin
BSDCan

May 19, 2023



Overview

• Basics of ptrace()
• ptrace() extensions to support threads (LWPs)
• Improving support for multiple processes in GDB
• Some remaining issues to address in GDB’s native target
• Future Work 



ptrace() Basics

• Debugger attaches to another process via PT_ATTACH
• Attached processes report status to the debugger via wait() for 

signals and process exit
• Debugger can choose to discard an intercepted signal or pass it on when 

resuming a process via PT_CONTINUE
• SIGTRAP for breakpoint instructions are typically discarded for example

• The kernel can inform the debugger of other interesting events by 
raising a special signal (usually SIGTRAP)
• System call entry/exit



Fork Following

• Debuggers want the opportunity to debug new children of a 
debuggee
• PT_FOLLOW_FORK enables following
• Kernel auto-attaches existing debugger to new child processes

• Events reported in both parent (”I forked”) and new child (”I’m a new 
fork child”)
• More details in an earlier BSDCan talk: 

https://papers.freebsd.org/2016/bsdcan/baldwin-freebsd_and_gdb/

https://papers.freebsd.org/2016/bsdcan/baldwin-freebsd_and_gdb/


ptrace() Extensions for Threads

• FreeBSD 5.x added initial support for multiple kernel threads (LWPs) 
per process
• Each time a thread reports an event (signal), all threads stop
• Race to set p_xthread member to reporting thread

• PT_LWPINFO provides more details about thread stop (and which 
LWP)
• PT_SUSPEND and PT_RESUME permit resuming only a subset of 

threads via PT_CONTINUE
• PT_LWP_EVENTS added in 11.0 to report thread birth and exit



PT_CONTINUE and threads

• Each PT_CONTINUE or PT_STEP “acknowledges” one thread event
• If multiple threads have events pending, then after PT_CONTINUE 

the remaining threads will race to set p_xthread and stop all the 
other threads that were just resumed
• Can only pass along a signal to a thread for the PT_CONTINUE or 
PT_STEP for that thread’s signal event
• If you PT_SUSPEND the thread instead planning to resume it later, you can’t 

pass along the signal later when you PT_RESUME it



FreeBSD Native Target in GDB 13

• Supports threads (LWPs) in native processes
• Supports fork following
• Supports various other extensions like system call events and info 
proc
• Recently supports async mode and hardware watchpoints on aarch64
• Claims to support multi-process debugging
• But is rather broken due to misunderstandings on my part



GDB bug 21497

• https://sourceware.org/bugzilla/show_bug.cgi?id=21497
• A new thread ”arrives” when GDB thinks it shouldn’t be executing:
• A new thread is created in a process but has not yet started executing
• Some event occurs that causes the process to stop and report an event to the 

debugger (e.g. an existing thread triggers a breakpoint)
• GDB wants to single-step one thread in the process leaving all other threads 

stopped (common after a breakpoint hit)
• PT_SUSPEND all the other threads that GDB knows about (doesn’t know about new 

thread)
• PT_STEP desired thread

• GDB expects next event to be result of PT_STEP, instead the new thread 
executes and reports its thread creation event

https://sourceware.org/bugzilla/show_bug.cgi?id=21497


Fix for New Thread Race

• This is a race between the callback that resumes execution and the 
thread reporting its birth
• One fix: use PT_GETLWPLIST each time the resume callback is 

invoked to search for new, but not-yet-announced, threads so they 
can be suspended via PT_SUSPEND
• Would add at least two additional ptrace() calls for each resume

• Second fix: “remember” that GDB is executing a single thread from a 
process (rather than all threads from a process) and defer thread 
birth events
• Only adds overhead in the uncommon case



Fix Details

• GDB’s resume callback takes a few arguments: a ptid_t identifying 
the process/thread to resume, whether to step vs continue, and 
signal to deliver (if any)
• ptid_t can either be an entire process, a single LWP, or a wildcard 

meaning all processes
• The fix saves the value of this ptid_t in a global used in wrapper 

around wait() system call
• If a new event has a LWP ID not matching the ptid_t from resume, 
PT_SUSPEND the LWP and PT_CONTINUE process to get next event



Down the Rabbit Hole…

• As part of the fix, added various assertions to document my 
assumptions
• Ran GDB’s test suite and new assertion failures confirmed false 

assumptions on my part
• First false assumption: The resume callback is only called once before 

each call to wait
• I had asserted that the new global variable wasn’t set multiple times

• Actual truth: The resume callback can be called for multiple 
processes before calling wait



Multiple Processes for Real

• This assumption exposed broader false assumptions by myself about 
how multiple process support worked in GDB
• I’m not sure exactly what my old model really was, but it was wrong

• The real model is that GDB will resume one or more 
processes/threads before doing a wait
• If the ptid_t passed to resume is the wildcard, all of the currently debugged 

processes should be resumed, not just the “current” one

• When a process stops to report an event, GDB expects all the other 
currently running processes to also stop
• GDB calls this “all-stop” mode



Fixes for Multiple Processes

• Instead of a global copy of the resume ptid_t, store a copy for each 
active process
• ”inferior” in GDB parlance

• If resume is invoked with the wildcard ptid_t, iterate over all active 
processes resuming each one
• Added a new helper function to stop a process
• Tries wait() with W_NOHANG first in case it is already stopped
• Otherwise, send SIGSTOP and wait() for an event from the process
• If the event isn’t the SIGSTOP, remember to ignore the next SIGSTOP for 

this process



Fixes for Multiple Processes

• When waiting for an event, first check for any previously deferred 
events that are now eligible to be reported
• If there is no pending event, call wait() to get an event
• If the event returned from wait() is for a thread that shouldn’t be 

running, defer it and call wait() again
• Once there is an event to return to the caller, iterate over all the 

active processes and stop them if they are running via the new helper
• Added lots more assertions to document assumptions



Farther Down the Hole…

• New assertions found more incorrect assumptions
• Specifically, two other callbacks in the native target can be called on a 

process that is still running: detach and kill
• Extra wrinkles to fix for these cases
• If the process to detach/kill has a thread with a pending fork event, the 

kernel has already attached to the child and GDB needs to detach from the 
child
• If the process has active breakpoints during detach, need to clear them 

before detach
• If the process to detach has a thread with a pending breakpoint event, need 

to fixup PC for the thread before detaching 



Dealing With the Wrinkles

• Having to drain certain types of events (pending signal such as 
SIGSTOP, SIGTRAP for some debugger event like a breakpoint hit, 
fork events) during detach/kill
• ptrace() can only discard a signal for the current reporting thread 

for PT_CONTINUE
• Can’t just use a single loop to clear any pending events in the process
• Instead, have to scan for anything pending in other threads and 
PT_CONTINUE + wait() to clear the next event
• Keep looping until no threads have any pending events



Found a Bug

• While testing the detach fixes, found a bug (my fault) with 
PT_LWP_EVENTS
• PT_DETACH doesn’t clear the flag (TDB_BORN) used to instruct a new 

thread to report SIGTRAP before its first instruction
• If you detach in this state, the thread delivers the SIGTRAP after PT_DETACH 

and promptly dies

• Fine-tuning and verifying the fix: https://reviews.freebsd.org/D39856

https://reviews.freebsd.org/D39856


Deeper Still…

• At this point, the GDB test suite is now only raising a single new 
assertion failure
• But it’s a doozy: in one test GDB is resuming two specific threads (but 

not others) from a single process
• Can even do this from the command line in GDB with scheduler 

locking and use of continue&



Multiple Resumes for a Process

• Can no longer trigger PT_CONTINUE/PT_STEP from resume callback 
since there might be multiple callbacks for a single process
• Instead, track set of resumed LWPs for each process along with other 

“pending resume” state like a stepping LWP and pending signal
• Each call to the resume callback updates the pending resume state 

for the process
• At start of wait callback, iterate over processes to resume them via 
PT_CONTINUE/PT_STEP



Issues Observed with ptrace()

• There are still many bugs to work through in GDB’s test suite, but 
from this recent work I’ve encountered some limitations in FreeBSD’s 
ptrace()
• GDB wants to at least read (and possibly even write?) to process 

memory while threads are running
• Reading is racy, sure, but for reading this shouldn’t be too hard to fix

• Need a way to keep a deferred signal deferred until the thread is 
really resumed
• Allow signal to remain pending while in PT_SUSPEND state and only clear 

it/deliver it when actually resumed



Issues Observed with ptrace()

• Would really like a way to drain multiple events from a process while 
it is stopped
• This would simplify the detach/kill handling while also avoiding a loop that 

can in theory never make progress

• LWP create events are not like fork
• Fork reports events for both parent and child, and Linux threads do the same
• Current approach means you can have an “empty” process if thread A 

creates thread B and then exits and you get thread B’s exit event before 
thread A reports its birth



Current Status

• Fix for TDB_BORN bug will land soon
• Patches for GDB have gone through some review and I’m still refining 

them (in particular the patch to batch up resume requests is still a 
WIP)
• https://github.com/bsdjhb/gdb/compare/master...defer_resume

https://github.com/bsdjhb/gdb/compare/master...defer_resume


Future Work

• Have some old work (need to rebase and retest) to replace 
p_xthread race in the kernel with an explicit linked-list of threads 
with events to report
• Interacts poorly with some tests added a few years ago that I still need to 

work out

• On top of the thread queue is a less-polished patch that tries to avoid 
spurious EINTR for deferred signals
• Goal is to leave threads asleep in the kernel while a signal is deferred to the 

debugger



Future Work

• Fixes for some of the issues raised earlier
• Keeping a deferred signal deferred while PT_SUSPEND
• A way to ack the current event and fetch the next one without 
PT_CONTINUE
• LWP create event reported by the creating thread

• Single stepping and signal handlers
• Linux steps into signal handlers, FreeBSD steps over
• Could add new mode that raises SIGTRAP at start of signal handler
• Need to PT_CLEARSTEP after return from signal handler



Future Work

• More GDB test suite failure chasing
• Non-stop mode?
• Would not stop the entire process when an event is reported, just the 

reporting thread
• Probably depends on the thread queue patches
• Use thr_kill2() to send SIGSTOP to individual LWPs



Questions?


