VT-IME: Input Method Editor in FreeBSD vt(4)

Fan Chung
fan @freebsd.org

Abstract—This paper introduces the vt-ime framework, specif-
ically designed to enable direct CJK (Chinese, Japanese, and
Korean) character input in FreeBSD’s virtual terminal, vt(4).
Despite vt(4)’s advancements, including Unicode support and
the capability to display double-width CJK characters, direct
CJK character input capability was still lacking. The vt-ime
framework, integrating both backend and frontend components,
addresses this gap by providing seamless CJK and non-ASCII
character input, thereby enhancing vt(4)’s functionality and
usability, especially for users who rely on non-ASCII characters.
The backend component is tasked with efficient input processing
and character encoding, ensuring both compatibility and perfor-
mance. Concurrently, the frontend offers an intuitive interface
for user interaction. This blend of backend robustness and
frontend usability establishes vt-ime as a significant development
in FreeBSD, meeting the needs of multilingual environments. The
paper also delves into the technical challenges and solutions, and
future work of the vt-ime framework.

Index Terms—Input method editor, virtual terminal, CJK
characters, FreeBSD

I. INTRODUCTION

The virtual terminal is a text-based interface that allows
users to run commands and edit files. In FreeBSD, there are
two implementations of the virtual terminal driver : vt(4) [L]]
and syscons(4) [2]]. vt(4) is the newer virtual terminal console
driver that replaces syscons(4), and provides several improved
features, such as support for Unicode and double-width char-
acter for CJK characters. However, vt(4) still lacks support for
inputting CJK characters directly.

In this paper, we proposed vt-ime framework, which pro-
vides an environment for users to type CJK characters in the
virtual terminal vt(4). The vt-ime framework is composed of
two parts: the vt-ime backend and the frontend. The backend
listens for key events sent from the frontend and uses an input
method library, such as librime [3], to translate these key
events into valid CJK characters. The processed characters are
then sent them back to frontend for rendering. The frontend,
which runs inside vt(4), is responsible for rendering the virtual
terminal and display the CJK characters on the screen.

The source code and documentation of our vt-ime prototype
is available at: https://github.com/Cycatz/GSoC2021

II. BACKGROUND
A. Virtual Terminal, CJK and IME

As the software industry has matured and grown in pop-
ularity, an increasing number of people are choosing to use
Unix-like systems as their primary servers. These systems are
used for a wide range of tasks, including general text editing,
hosting websites, and even training machine learning models.
One of the key tools that is essential for performing these task

is a terminal, which allows users to access the command line
interface and execute commands on the server conveniently.

In FreeBSD, there are two implementations of the virtual
terminal driver: vt(4) and syscons(4). vt(4) is the newer virtual
terminal console driver that is intended to replace syscons(4)
with several added features. These features are enabled by
default in the GENERIC configuration for the amd64 and
1386 architectures. In particular, vt(4) adds support for UTF-8
encoding and double-width characters, making it possible to
display CJK characters.

However, currently vt(4) does not support inputting CJK
characters. To type these characters, users must switch to a
graphical user interface (GUI) environment and use compatible
input method editors. For instance, the X window system [4],
the most widely used GUI display framework on Unix-like
operating systems, has its own input method protocol called X
window input method (XIM) [5]. While using an input method
editor in GUI may be convenient for users who use the system
as the daily driver, it can be inconvenient and unsuitable for
users who use the system as a server. This is because it requires
additional programs and libraries to be installed and running in
the background, which can consume extra hardware resources
and increase costs in terms of both money and time.

The term ”CJK” is an acronym for ’Chinese, Japanese, and
Korean”, and the term ”CJK character” refers to the Chinese
characters or ideographs used in the writing systems of these
languages. Standard Chinese is written almost exclusively in
Chinese characters, and over 3000 characters are required for
general literacy, with up to 40,000 characters for reasonably
complete coverage. With such a large number of characters,
it is infeasible to map all of them to the keys on a keyboard.
Therefore, CJK character users often depend on an additional
software called an Input Method Editor (IME) to type CJK
characters on a computer.

An Input Method Editor (IME) is a program that allows
users to input characters that are not natively available on their
keyboard by using sequences of characters. IMEs typically
support multiple Input Method Engines, which implement one
or more Input Methods. An Input Method defines the key
sequences that can be used to compose a character.

In Figure [I], the IME fcitx [6] is shown along with the
input method engine fcitx-rime [1]]. The input method Zhuyin,
which is one of the widely used input method in Taiwan,
is selected. The text [{R#f 1 (which means “Hello” in
English) is inserted by typing the key sequence “su3cl3” on
a QWERTY keyboard. The “preedit string” (labeled (1) in
the figure) contains temporary characters that are still being
composed and may or may not have been translated into final

https://github.com/Cycatz/GSoC2021

CJK characters. The ”candidate selection” area (labeled (2) in
the figure) shows the possible results that the input method
has produced when translating the keystrokes into a valid
character. A user must choose the most suitable candidate from
the available candidates.

Q55 A @ 7 % W HEE S tHid X 185

Fig. 1. Fcitx, an input method editor, with fcitx-rime input method engine
and zhuyin input method

B. VI-IME

In this paper, we propose vi-ime, a system that integrates
an Input Method Editor (IME) into the FreeBSD vt(4). vt-ime
consists of two parts: a frontend and a backend. The frontend,
which runs in the kernel space, is responsible for intercepting
key press events and rendering the IME interface in vt(4). The
backend, which runs in user space, runs a server that receives
sequences of key events from the frontend and translates them
into CJK characters by calling APIs from an input method
engine.

The steps for typing a CJK character with VI-IME are as
follows:

1) The user activates the VI-IME mode and presses a
sequence of keys.

2) The frontend intercepts the key press events from vt(4)
and sends them to the backend.

3) The backend translates the events by invoking the func-
tions in the input method engine library and returns the
results to the frontend.

4) The frontend draws the interface for displaying the
results, including the preedit text and character/word
candidates.

5) The user selects the first candidate using the number key
717,

6) The frontend inserts the selected candidate text at the
current cursor position.

III. VT-IME
A. frontend

The kernel sources of vt are located in the
src/sys/dev/vt directory. Here is a list of relevant
vt files for our implementation:

o vt.h: The main header file, containing struct and func-
tion declarations.

e vt_core.c: The main source file, containing structure
instances and function definitions.

e vt_buf.c: A source file defining operations for the vt
display buffer.

The vt-ime implementation is based on FreeBSD 13.0-
RELEASE, and the functions and data types mentioned in
the following text are derived from that version.

To support the input of CJK characters in vt(4), we
need to devise a solution for retrieving key events

in the terminal. In vt(4), the vt_process_key
function in vt_core.c is responsible for processing
key press events. It calls terminal_input_char,

terminal_input_special, or
terminal_input_raw to send information to the
terminal layer, depending on the type of the key.

Therefore, we can leverage key information from the
vt_process_key function to support the vt-ime mode. To
do this, we define the vt_ime_process_char function.
When the vt-ime mode is enabled, key information is passed
to the vt_process_key function instead of inputting di-
rectly to the terminal. Listing 1. shows the modifications to
vt_processchar to support this functionality..

1 @@ -990,6 +1012,15 @@
— vt_processkey (keyboard t =*kbd,
— vt_device *vd, int c)
#if defined (KDB)
kdb_alt_break (c,
#endif
terminal_input_char (vw->vw_terminal,
KEYCHAR(c)) ;

struct

&vd->vd_altbrk);

#if VI_IME
if (vt_ime_is_enabled(&vt_ime_default))
vt_ime_process_char (vw->vw_terminal,

[~}
+ o+ o+ o+

11 main_vd,
&vt_ime_default,

13 KEYCHAR (c)) ;

14 else

15 #endif

16 terminal_input_char (vw->vw_terminal,

17 KEYCHAR (c)) ;

18 } else

19 terminal_input_raw (vw->vw_terminal, c);

Listing 1: Modifications to vt_processkey

When a key press event occurs,
vt_ime_process_char, the core function of vt-ime,
perform the following routines in sequence. Each of these
routines corresponds to a specific vt-ime function:

1) Send the key to the backend (vt_ime_send_char)

2) Display the vt-ime status bar

(vt_ime_draw_status_bar)
3) Input the characters/words into the terminal if any
(vt_ime_input)

The process begins by sending key information to
the backend. This is achieved by invoking the function
vt_ime_send_char, which sends the data to the user space
via the kernel socket interface. The connection to the backend
system is established via a local port that has been previously
opened.

The vt-ime status bar is a user interface that displays infor-
mation related to the IME, including the preedit string and a
list of word or character candidates. The preedit string contains

CJK characters that the user is in the process of composing
but has not yet inputted. The candidate area displays a list of
available characters or words, which the user can select by
pressing the corresponding number key.

In vt-ime, the vt_ime_draw_status_bar function is
called to draw the vt-ime status bar in vt(4). This function
converts the UTF-8 encoded data into term_char_t char-
acters using the vt_ime_convert_utf8_byte function.
term_char_t is a data type used to store input/output char-
acters in the terminal layer. The lower bits of term_char_t
contain the Unicode code point, while the top bits contain
other attributes such as colors.

In addition, we need to deal with the display of double-
width CJK characters. In vt(4), a double-width CJK character
is divided into the left half and the right half, and each half is
rendered individually. There is a terminal attribute flag called
TF_CJK_RIGHT defined in sys/teken/teken.h, which
can be used to mark a character as the right half of a CJK char-
acter by performing a bitwise OR operation with the flag. This
allows the terminal to render CJK characters correctly. Listing
2. shows the vt_ime_draw_status_bar function.

void
vt_ime_draw_status_bar (struct vt_device *vd,
char xstatus)

JE e xS/

ch = FG_WHITE |

1

2

3

4
500
6

7

8 BG_BLUE;
9

len = strlen(status);
10 while (len-- > 0) {
11 ret = vt_ime_convert_utf8_byte (sutf8_left,

— &utf8_partial,

1 xCHt)

14 if (ret <= 0)

15 continue;

16 vb->vb_ime_buffer([blen++] = (ch) |

17 utf8_partial;
18 vb->vb_ime_buffer[blen++] = (ch) |

19 utf8_partial

— TFORMAT (TF_CJK_RIGHT) ;
21 }
2 VA B4

23 }

Listing 2: Function vt_ime_draw_status_bar

The marco VIBUF_GET_FIELD (vt.h) is used by vt
drivers to retrieve the characters for rendering characters onto
the screen. We modify the marco to draw the vt-ime status
buffer vb_ime_buf fer when the requested position is at the
first row when the vt-ime mode is enabled. Listing 3. shows
the modifications to the VTBUF_GET_FIELD marco.

The final step is to input the composed CJK characters by
invoking the vt_ime_input function. As with the previous
steps, the data is converted into a sequence of term_char_t
characters and inputted using the terminal_input_char
function.

-#define

+

+#ifdef VT_IME
+inline term_char_t

1 VIBUF_GET_FIELD (vb, r, c) \
2
3
4
5 +VTBUF_GET_FIELD (const struct vt_buf =xvb,
6
7
8
9

+ int r,
+ int c¢)
+{
+ 1f (vt_ime_buf_state && r == 0)
10 + return vb->vb_ime_buffer(c];
1 + else
12 + return ((vb)->vb_rows|[((vb)->vb_roffset
- + (r)) %
13 + VTBUF_MAX_HEIGHT (vb)][(c)]1);
14 +1}

15 +#else
16 +#define VTBUF_GET_FIELD (vb, r, c) \

17 ((vb) =>vb_rows [((vb) —>vb_roffset + (r)) %
<« VTBUF_MAX_HEIGHT (vb)][(c)])

18 +#endif

19 +

Listing 3: Modifications to the VTBUF_GET_FIELD marco

B. backend

The backend of the vt-ime is responsible for handling key
press events received from the frontend, translating them into
CJK characters, and sending them back to the frontend. To
communicate with the frontend, the backend opens a local
port, enters a infinite loop and keeps listening messages from
the frontend. In vt-ime, there are five message types key, raw,
delete, output and exit.

The key and raw message types are used to send visible
key and special key information, respectively, to the backend.
The delete message requests the deletion of a character, while
the output message requests the current status text, including
the preedit string and word candidates. The exit message type
prompts the backend to terminate.

There are various input method engine libraries available,
such as libime [8] by fcitx and librime by Rime [9]]. In
the vt-ime, librime was selected due to its user-friendly and
highly customizable APIs. Python [10] was chosen as the
programming language for backend development due to its
native UTF-8 support and high-level interface, which allowed
for a greater focus on the core implementation of the backend.

However, as librime is written in C and C++ and its
functions and data types are complex, a C wrapper library
called /ibwrime was implemented to encapsulate the necessary
functions and data types from librime and expose them to
Python using ctypes [11] . The overall architecture of the
backend is depicted in Figure 2.

IV. RESULT

Figure 3. presents a screenshot of vt-ime within vim [12] in
vt(4).

The screenshot shows the text [{/REFHF 1 being inserted
in the middle of the terminal. The vt-ime status bar, located
at the top of the terminal, displays the preedit string [X
T &£~ Y—H~ 1 and five word candidates: [FIF
M5, TRty , T, Ti&y ,and THRJ .

Backend Server
(server.py)
Call libwrime wrappers

Librime wrapper library
(libwrime.so)
Call librime functions

Librime
(librime.so)
Rime Input Method Engine Library

Fig. 2. Architecture of the backend

Fig. 3. A screenshot of vt-ime

V. CONCLUSION & FUTURE WORK

In this paper, we propose vt-ime, which offers a solution
for typing CJK characters in the FreeBSD vt(4). It consists
of a backend and frontend, with the backend translating key
events into valid characters using an input method library
and the frontend responsible for displaying the characters on
the screen. This framework provides a useful environment for
users to input CJK characters in the virtual terminal.

However, the current design of vt-ime has some limitations.
One of these limitations is the incomplete IME features, as
users are currently unable to select candidates using number
keys or change the input method. As future work, we plan to
improve the integration between vt(4) and vt-ime and enable
users to customize vt-ime settings, such as key bindings and
input methods, through the sysctl(7) [13] utility.

Additionally, the current communication between the fron-
tend and backend of vt-ime utilizes a socket interface, which
may raise security concerns. To address this, we plan to
use a character device for communication between the two
components and rewrite the backend in C.

REFERENCES

[1] “vt(4),” a virtual terminal console driver. [Online]. Available:
https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4

[2] “syscons(4),” the console driver. [Online]. Available: https:/www.
freebsd.org/cgi/man.cgi?query=syscons&sektion=4

[3] “librime,” a modular, extensible input method engine.
Available: https://github.com/rime/librime

[Online].

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

“X window system.” [Online]. Available: http://www.opengroup.org/
tech/desktop/x-window-system/

“X input method protocol.” [Online]. Available: https://www.x.org/
releases/X11R7.6/doc/1ibX11/specs/XIM/xim.html.

“fcitx,” an input method framework with extension support. [Online].
Auvailable: https://fcitx-im.org/wiki/Fcitx_5
“fcitx-rime,” rIME support for Fcitx.
//github.com/fcitx/fcitx-rime

“libime,” a library to support generic input method implementation.
[Online]. Available: https://github.com/fcitx/libime

“rime.” [Online]. Available: https://rime.im/

“Python.” [Online]. Available: https://www.python.org/

“ctypes,” a foreign function library for Python. [Online]. Available:
https://docs.python.org/3/library/ctypes.html

“Vim.” [Online]. Available: https://www.vim.org/

“sysctl(8).” [Online]. Available: https://www.freebsd.org/cgi/man.cgi?
query=sysctl&sektion=8

[Online]. Available: |https:

https://www.freebsd.org/cgi/man.cgi?query=vt&sektion=4
https://www.freebsd.org/cgi/man.cgi?query=syscons&sektion=4
https://www.freebsd.org/cgi/man.cgi?query=syscons&sektion=4
https://github.com/rime/librime
http://www.opengroup.org/tech/desktop/x-window-system/
http://www.opengroup.org/tech/desktop/x-window-system/
https://www.x.org/releases/X11R7.6/doc/libX11/specs/XIM/xim.html
https://www.x.org/releases/X11R7.6/doc/libX11/specs/XIM/xim.html
https://fcitx-im.org/wiki/Fcitx_5
https://github.com/fcitx/fcitx-rime
https://github.com/fcitx/fcitx-rime
https://github.com/fcitx/libime
https://rime.im/
https://www.python.org/
https://docs.python.org/3/library/ctypes.html
https://www.vim.org/
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8
https://www.freebsd.org/cgi/man.cgi?query=sysctl&sektion=8

	Introduction
	Background
	Virtual Terminal, CJK and IME
	VT-IME

	VT-IME
	frontend
	backend

	Result
	Conclusion & Future Work
	References

