
rtprio(2) and POSIX(.1b) priorities, and their
FreeBSD implementation: A deep dive (and sweep)

Revised – 2024/03/22

Olivier Certner
Kumacom SARL – Consulting

olce.conferences@certner.fr

Abstract—Although UNIX’s descendants or deriva-
tives are not hard real-time operating systems, some
have support for soft real-time through allowing to
assign to userland processes higher priorities normally
reserved to the system, sometimes coupled with pre-
emption of kernel tasks, making them suitable as a
fundation of soft real-time system. POSIX standardized
its first real-time extensions in 1993 in a document
usually referred to as POSIX.1b. At that time, however,
some operating systems already had support for soft
real-time in the form of ad-hoc APIs, such as System V
Release 4 (SVR4) with its priocntl(2) system call and
HP/UX with its rtprio(2) one. FreeBSD first adopted
its own rtprio(2) system call in 1994, largely based
on HP/UX’s with extensions such as idle processes.
POSIX.1b extensions concerning processes were imple-
mented later, in 1998, and some preliminary thread
support added the next year. Since then, these APIs
have been present in the system for applications to use.

In this paper, we provide a thorough description of
both FreeBSD’s rtprio(2) and POSIX.1b’s scheduling
interfaces and embark on a journey around FreeBSD’s
implementation of scheduling priorities. It started with
a desire to fix a few apparently simple bugs of rtprio(2)
and to add some reasonable features and, one thing
leading to another, became an almost complete rewrite
of this system call and the POSIX.1b’s interfaces’ im-
plementations. We will expose the many problems that
the current implementation has, in terms of POSIX
compliance, security and consistency and how we are
fixing them. As of this writing, this project is still a
work in progress, and we will report about its status
during the conference presentation.

I. Introduction

Real-time systems run software that must respond to
some external events in a given, short timeframe to ensure
correct functioning. Traditionally, these systems are divided
in two classes. Hard real-time systems are ones where failure
to meet deadlines can have catastrophic consequences, or
in other words, where a result produced too late is as bad,
or worse, than a wrong result. Examples of such are digital
control ones for machines in plants and brake controllers in
cars. By contrast, soft real-time systems that miss deadlines
can cause a noticeable quality of service degradation but
can continue functioning, and typically previous temporary
failures do not affect later operation. An example is a
multimedia streaming system, where not sustaining frame
rates can be noticed but is tolerable depending on the

actual delays and their frequency of occurence. However,
this distinction has blurred with hardware performance
increases, which give much more room to meet deadlines [1],
and finer analyses on the usually benign consequences of
a few deadline misses. This makes UNIX-like operating
systems excellent candidates as a fundation to implement
a large part of real-time systems.

The IEEE POSIX P1003.4 working group was established
to standardize real-time features apparently in or before
1989, as can be inferred from [2]. It nurtured three docu-
ments, initially named POSIX.4, POSIX.4a and POSIX.4b.
The first is about base real-time extensions, including real-
time process scheduling, our main concern in this paper,
but also virtual memory locking, real-time signals, process
synchronization with semaphores, shared memory, interpro-
cess communication via simple queues, clocks and timers,
and asynchronous I/O. The second is about threads, collo-
quially known as pthread, and includes thread scheduling
and synchronization. The third is about additional real-
time extensions, such as timeouts, execution-time clocks, a
new sporadic server scheduling policy (SCHED_SPORADIC),
interrupt control and I/O device control. It is out-of-scope
for this paper, as FreeBSD does not currently implement
the SCHED_SPORADIC scheduling policy and we have not
planned to add it in the course of this work. The reader
interested in an overview of these historical documents can
consult [3].

Around standardization of POSIX.4 in 1993, it was de-
cided that documents produced by the POSIX.x working
groups that were amendments to the initial POSIX.1 stan-
dard would be regrouped under the same IEEE 1003.1
prefix (see for example [4]). In particular, the three docu-
ments mentioned above were respectively renamed to IEEE
1003.1b, 1003.1c and 1003.1d, and were usually referred to
as POSIX.1b, POSIX.1c and POSIX.1d from that point.
They were approved to standards in 1993, 1995 and 1999.
Another document, prepared later, contained “advanced”
real-time extensions and was finally published in 2000 as
POSIX.1j.

POSIX.1 itself had been approved first in 1988, and
then in 1990 as an international standard as ISO/IEC
9945-1. The “.1” in POSIX.1 standed for “System Appli-
cation Program Interface” part, whereas POSIX.2, first
standardized in 1992, was the “Shells and Utilities” part.



This distinction does not exist anymore, as these two parts
were all incorporated and superseded by POSIX.1-2001,
so POSIX.2 formally no longer exists. It is now possible
to unambiguously refer to the POSIX.1 standard as just
“POSIX”, even if not formally correct, which we will do in
most of this article.

Additionally, all amendments to POSIX.1, including the
POSIX.1b, .1c, .1d and .1j documents mentioned above,
were discontinued as separate documented and incorpo-
rated into POSIX.1-2001, as the options Process Schedul-
ing (code PS), Threads (code THR), Thread Execution
Scheduling (code TPS), Thread Priority Inheritance (TPI)
and Thread Priority Protection (TPP).

From this point on, POSIX.1 documents have exactly
coincided with the Base Specifications of the Single UNIX
Specification (SUS) from the Open Group, but the time-
line for new issues has differed. POSIX.1-2001 (Issue 6) is
thus included in the Single UNIX Specification version 2
(SUSv2), POSIX.1-2004 (still Issue 6 but with technical
corrigenda) in SUSv3 and POSIX.1-2017 (Issue 7 with tech-
nical corrigenda, published in 2018) in SUSv4. POSIX.1’s
Issue 7, also referred to as POSIX.1-2008, removed the
Threads (THR) option, making its features mandatory.
It also introduced new options covering two new mutex
protocols which involve temporarily altering the priority of
threads holding mutexes. These protocols are designated
by the constants PTHREAD_PRIO_INHERIT and PTHREAD_-
PRIO_PROTECT, whereas the previous behavior of doing
nothing special to prevent priority inversion is represented
by PTHREAD_PRIO_NONE. Coupled with the introduction
of robust mutexes, this led to four new options: Robust
Mutex Priority Inheritance (RPI), Non-Robust Mutex Pri-
ority Inheritance (TPI), Robust Mutex Priority Protection
(RPP) and Non-Robust Mutex Priority Protection (TPP).
POSIX.1’s Issue 8 is in preparation, with Draft 4 just com-
pleted in December 2023, and hopefully should materialize
as a standard this year or in 2025. It does currently only
contain very minor changes with respect to scheduling
priorities. Someone interested in reading the prescribed
rules on this topic thus just needs to consult a recent
version of POSIX.1, such as [5] or equivalently the Base
Specifications of SUSv4.

FreeBSD aims to implement POSIX, at least for not
too obscure or cumbersome features, and currently does
so for all the options we have mentioned above. POSIX
has been a great success as it has influenced all UNIX-like
implementations. It is however imperfect, especially on
scheduling topics. For aspects it specifies either vaguely or
improperly, in some cases we have surveyed the behavior
of most other prominent open source implementations,
including GNU/Linux, illumos, OpenBSD and NetBSD. As
hinted in the abstract, FreeBSD also provides its own inter-
face and model of scheduling priorities predating POSIX’s,
centered around the rtprio(2) system call inspired by
HP/UX’s one, accompanied by the command-line utilities
rtprio(1) and idprio(1).

In this paper, we describe our journey throughout
FreeBSD’s implementation of process and threads priorities.
It starts with a description of what scheduling priorities
are and how they generally influence process and thread
scheduling, first by approaching the original rtprio(2)
interface and the POSIX facilities. It then follows with
some anecdotes on strange behaviors observed in the field
and what we found lacking in the reports the operating
system can produce, which were the motivation to deep
dive in this work. We then review and rework the entire
implementation of these facilities. Finally, we conclude
with a status, including on-going work, and evoke possible
future endeavors in this area.

II. The rtprio(2) model
A. Interface

This interface was the first implemented in FreeBSD
and its internal code also serves as the basis for the later-
implemented POSIX’s one. It initially consisted of a single
system call, rtprio(2), whose signature is:
int rtprio
(int function, pid_t pid, struct rtprio *rtp);
The first argument, function, can take the following

values:
RTP_LOOKUP Query the current rtprio specification.
RTP_SET Set the rtprio specification.

while the second, pid, must normally be the PID of some
process, but can instead be 0 to indicate operation on the
current thread only. This last feature was introduced as part
of the work to allow threads of a process to be scheduled
simultaneously on different processors, to be consistent with
a similar change done to sched_setscheduler(), itself in
violation of an arguably poor choice from POSIX we will
talk about in subsection III-A. In restrospect, we consider
this feature to have been ill-advised as it departs from the
treatment of other values1. Today, if the current thread’s
priority only has to be modified and not its process’, the
rtprio_thread(2) system call described below should be
used instead.

Finally, the last argument, rtp, serves to pass a
struct rtprio, in or out depending on function. This
structure represents the rtprio(2) view of scheduling
priorities, and has the following fields:
type The priority type, or class.
prio The priority level in the type/class.

The priority model is that the type (or class) specifies
the desired scheduling policy, whereas the level indicates
the relative strength within the class. Larger values of
prio indicate a lower priority, following the tradition es-
tablished by the nice(2) interface and continued with
getpriority(2)/setpriority(2), and similarly to ranks
in a competition to obtain processor time.

Possible values for type were, before this project started:
1This choice also shadows PID 0 used by the kernel but, given the

number of threads in process 0, this could be considered a feature.



RTP_PRIO_NORMAL
Stands for the normal class, i.e., traditional UNIX time-
sharing.

RTP_PRIO_REALTIME
Stands for the real-time class.

RTP_PRIO_FIFO
Stands for the FIFO class, same as the real-time class,
but with the additional property that an infinite time-
slice is assigned to threads/processes in this class.

RTP_PRIO_IDLE
Stands for the idle class.

RTP_PRIO_ITHD
Class for kernel threads running interrupt handlers.

We explain the role of these classes in subsection II-B
below.

Another system call was later added, rtprio_thread(2),
which operates on threads instead of processes. Its signature
is identical to that of rtprio(2) except that pid_t pid is
replaced by lwpid_t lwpid. In FreeBSD, Lightweight Pro-
cess (LWP) IDs, which are just thread IDs since the removal
of M:N threading in 2008, share the overall same value
range with Process IDs (types pid_t and lwpid_t are in
fact the same, unsigned 32-bit integers). However, it is easy
to determine to which kind a particular (non-negative) ID
belongs to since they occupy different sub-ranges of values.
Process necessarily have IDs from the range 0 to PID_MAX
(99999, so at most 5 digits), and threads (LWPs) greater
than THREAD0_TID, defined to be PID_MAX+1 (100000, so
at least 6 digits). rtprio_thread(2) accepts the special
value 0 in the argument lwpid to mean to operate on the
calling thread. By contrast with rtprio(2), using 0 for
this purpose does not contradict the operation for other
values and does not shadow an existing thread.

Setting the priority of a process via rtprio(2) is equiv-
alent to setting the priority of each of its threads via rt-
prio_thread(2), except that the former does so atomically
with respect to other such changes or the creation of new
threads in the process. In reality, there is in fact no such
thing as a “process priority”, each thread having its own
priority view. However, rtprio(2) is only passed a single
struct rtprio, so calling it with RTP_LOOKUP has to re-
turn some synthetic result, which was chosen to be the
priority view of its thread with highest scheduling priority.
In our view, given this constraint, this choice is the best
one since it helps administrators spot processes that have
threads with high priorities. Having explained how the
priority view of processes is built upon that of threads, we
only consider threads in the reminder of this section.

B. Scheduling Types/Classes
Threads put in the real-time class internally have a fixed

priority based on the level set with the prio field. As soon
as they are runnable, they preempt any threads in the
normal or idle class, as well as those in their class that have
a lower priority (i.e., a higher level in prio). Threads in
the FIFO class are treated mostly the same. Their priority

levels are converted internally exactly as those of the real-
time class. The only difference is that these threads are
not subject to been descheduled after their timeslice has
expired, so other threads having the exact same priority
will not run until the former yield (voluntarily or because
they called a system call that puts them to sleep). The
acceptable values for the priority level in these classes is the
range RTP_PRIO_MIN (0) to RTP_PRIO_MAX (31) (included).

Threads in the idle class also have a fixed priority inter-
nally, based on the level set with the prio field. By contrast,
they only can preempt other threads with lower priority
in this class, and are themselves immediately preempted
by runnable threads in the other classes. The acceptable
values for the priority level in the idle class is the same as
for the real-time class.

Threads in the interrupt kernel threads class historically
have had a fixed priority internally assigned, but now can
be changed by the kernel on particular circumstances (in
case of timeslice exhaustion). Attempts to put a thread in
this class by any user, including root, fails with EINVAL.

Threads in the normal class are supposedly scheduled
by the system in a timesharing manner. To this end, the
scheduler internally assigns them a dynamic priority that
depends on their runtime behavior and the nice value
of their process. The rtprio(2) interface is ill-defined
in this regard. It allows to retrieve the current, dynamic
internal priority level, which is mostly useless, and gives
the appearance that one can set it, although in practice
doing so has almost no practical effect since the scheduler
recomputes it after a thread has been woken up or when it
has exhausted its timeslice. The range of accepted values
is 0 (no symbolic constant is provided for it is provided) to
PRI_MAX_TIMESHARE-PRI_MIN_TIMESHARE (included). The
symbolic constants of the higher bound are internal priority
levels and are thus subject to change in new releases of
FreeBSD. Although this does not happen frequently, the
range of internal timesharing priorities was widened during
the recent FreeBSD 13 to 14 transition, silently changing
the higher bound for RTP_PRIO_NORMAL from 103 to 135,
which is strictly speaking an unannounced API breakage.

C. Administration
To launch or move a process into the RTP_PRIO_FIFO or

RTP_PRIO_REALTIME class, the calling process must have
privilege PRIV_SCHED_RTPRIO. This administrative restric-
tion prevents non-authorized users from privatizing the
machine, or more likely, lock it up completely since real-
time threads have higher priorities than regular kernel
threads. In a vanilla FreeBSD, granting this privilege can
be achieved by either running the process as root or, if
the administrator enabled the mac_priority(4) module
without altering its default configuration, as a user that
has been added to the realtime user group.

The same kind of restriction exists for the RTP_PRIO_-
IDLE class, for which the corresponding privilege is PRIV_-
SCHED_IDPRIO and the user group used by the mac_pri-



ority(4) module is idletime. However, it is possible to
disable it entirely by setting the sysctl(8) knob secu-
rity.bsd.unprivileged_idprio is set to 1. This is a se-
curity measure to avoid potential deadlocks given that, at
introduction of this feature, the kernel did not internally
perform priority propagation. Today, there are still kernel
primitives not performing it, and we have not reviewed
the extent to which they are used. However, the kernel
temporarily raises the internal priority of threads executing
within it as they are about to be blocked for resources, so
they will eventually run even if nominally in the idle class.
Thus, setting the knob to 1 should not in practice present
a security risk. At introduction of the mac_priority(4)
module, this knob was marked as deprecated, but for the
reason we have just developed, we will likely undeprecate
it.

III. The POSIX model
A. Overview

The POSIX model can be seen as essentially similar
to the rtprio(2) one, and differs on a few mostly small
features. What was called scheduling types (or classes) in
the latter are called scheduling policies by POSIX. There
is no standardized idle scheduling policy, but instead a
sporadic server one specified by options Process Sporadic
Server (code SS) or Thread Sporadic Server (code TSP),
which no open source UNIX operating system implements2.
Priority levels are ordered in the opposite direction: Greater
priority levels mean higher priority. The SCHED_OTHER pol-
icy is completely implementation-defined, and is assumed
to be used by threads or processes that do not require
a real-time scheduling policy, which all UNIX operating
systems we know about dedicate to timesharing. There are,
however, two notable conceptual additions.

First, POSIX, in [5]’s XSH book, imposes more stringent
rules on priority levels and how to schedule threads from
them. It states that priority levels are global and that the
system must conceptually organize runnable threads into
ordered lists, with exactly one list per priority level. When
the system has an available processor, it must select the
thread at head of the highest priority non-empty thread list,
irrespective of its scheduling policy. Additionally, depending
on the reason why threads are added to some priority list,
they must be so either at head or tail. We will elaborate
on this point in subsection III-C.

Second, independent scheduling attributes are attached
both to processes and threads. Whether the scheduling of a
given thread is affected by its process’ attributes depends on
its scheduling contention scope. Threads that have system
contention scope are scheduled solely based on their own
scheduling attributes, irrespective of their process’. Threads
with process contention scope are scheduled according to
both. The process’ settings affect system-wide scheduling

2Linux has a specific deadline policy, SCHED_DEADLINE, meant to
address a similar high-level problem, but differing substantially.

of the kernel-scheduled entities (KSE) that in the end run
the process’ threads, and threads scheduled by a KSE
compete within it based on their respective settings3. This
is intended to model a two-level scheme where on one
hand the kernel schedules KSEs and on the other hand a
userland threading library schedules threads as seen by the
applications onto the KSEs.

This distinction between system and process contention
scope seems to be mostly obsolete these days in practice.
We do not know of any current open source implementation
actually supporting process contention scope. FreeBSD’s
former M:N threading implementation [6], which POSIX
refers to as “the hybrid model” of thread implementation,
was called KSE and had more elaborate rules, but was
finally discarded for its complexity. Today, FreeBSD will
accept requests to change a thread’s contention scope at-
tribute to PTHREAD_SCOPE_PROCESS without them having
any practical effect, instead of returning an error with code
ENOTSUP as, for example, glibc does.

Additionally, if we always assume system contention
scope, processes’ scheduling attributes should never have
any effect, and consequently the functions that operate
on them should be essentially useless. However, this is
inconsistent with the mandated behavior of functions set-
priority() and nice(), which operate on processes but
must also affect all their system-scoped threads. Moreover,
if we consider that, from a scheduling point of view, a
non-multi-threaded process can be equated with its single
thread, the functions operating on processes should also
affect that single thread. This view was prevalent when
threading was added in various operating systems, and
explains why none of the implementations we have surveyed
follow the implication we have just mentioned. We will
detail our choices in this respect, and compare them with
those of other implementations, in subsubsection IV-C5.

B. Scheduling Policies
The standardized scheduling policies are, expressed in

terms of threads since we assume system contention scope
for threads as we have just explained:
SCHED_FIFO

Threads at the same priority level are scheduled in
FIFO order. Each one runs to completion or up to
some blocking system call. Threads of higher priorities
preempt threads of lower priority.

SCHED_RR
Similar to SCHED_FIFO, except that threads cannot run
more than some time quantum in a row, in which case
they are put back to the tail of their priority’s level list.

SCHED_OTHER
Was described at beginning of subsection III-A.

SCHED_SPORADIC
Was described at beginning of subsection III-A.

3The POSIX description in [5]’s XSH book is much more vague
than that and consists only of a single example. It is our interpretation
that this example strongly hints at this rule.



Each scheduling policies has its own parameters. To-
gether, the specification of a policy and its parameters
form a particular value of scheduling attributes. POSIX
specifies that the policies SCHED_FIFO and SCHED_RR only
have a single parameter, a priority level (sched_priority,
see subsection III-C below). This priority level is also used
by policy SCHED_SPORADIC together with other parameters.
Implementations must provide at least 32 distinct priority
levels in each of these three policies. It is implementation-
defined which parameters are used by policy SCHED_OTHER,
but in practice, all the operating systems we looked at
make use of the priority level, and only it, as the associ-
ated parameters, but they implement different ranges of
admissible values, sometimes reduced to a single value.

In FreeBSD, policy SCHED_FIFO is completely equivalent
to rtprio(2)’s class RTP_PRIO_FIFO, SCHED_RR to RTP_-
PRIO_REALTIME and SCHED_OTHER to RTP_PRIO_NORMAL,
since these policies are in fact internally implemented
by these classes. Thus, policy SCHED_OTHER has as its
parameters only the priority level, like SCHED_FIFO and
SCHED_RR. However, since POSIX mandates that greater
levels must indicate higher priorities, rtprio(2)’s levels
cannot be used directly and have to be translated. The
current transformation operation is simple and applies to
all policies, thanks to all priority level ranges having a
minimum value of 0, be they on the rtprio(2) or POSIX
side. It is an involution, so starting from any side: Levels
are mirrored around 0 and then translated so that the
smallest value (the initial maximum level) coincides with
0 again. As an example, for policies SCHED_FIFO and
SCHED_RR, value 0 is transformed into value 31 of the
rtprio(2) range, 1 into 30, 2 into 29 and so on.

FreeBSD currently does not implement any non-stan-
dard policy but will soon do so. As they are relevant to
FreeBSD’s Linuxulator, here is the list of non-standard
policies Linux currently implements:
SCHED_IDLE

An idle policy. It differs with FreeBSD’s RTP_PRIO_IDLE
in that it admits a single priority level (0) and that
threads with other policies do not necessarily preempt
them immediately.

SCHED_BATCH
A timesharing policy, similar to SCHED_OTHER, indicat-
ing that the process should never be considered inter-
active.

SCHED_DEADLINE
A deadline policy, suitable for real-time treatment of
aperiodic events, like SCHED_SPORADIC, but substan-
tially differing from it in its operation.

In Linux, the admissible priority levels for SCHED_FIFO and
SCHED_RR are the range 1 to 99. For all other policies, only 0
can be used. This made Linux fully POSIX-compliant with
respect to the constraints on priority levels until the intro-
duction of SCHED_DEADLINE, where threads so scheduled
always preempt threads with different policies although

they have a priority level of 0, indicating lowest priority.
POSIX specifies that, by default, just-created processes

inherit the scheduling attributes of their parent if the lat-
ter follows the SCHED_FIFO or SCHED_RR policy, but says
nothing about other classes. All systems we have reviewed
always abide by this rule regardless of the parent process’
scheduling policy.

C. Scheduling Interface
1) Live Processes: We start by giving an exhaustive list

of all functions that can modify scheduling attributes of
live processes:
sched_setscheduler()

Set a process’ scheduling policy and its parameters,
together forming the scheduling attributes.

sched_setparam()
Set the parameters associated with a process’ scheduling
policy.

Each of these functions change settings that can be re-
trieved by another function whose name can be obtained
by substituting set with get.

Parameters for any policy are communicated through a
sched_param objects, which at a minimum has a sched_-
priority field to contain the priority level in the policy,
if applicable. Additional ones are required when the imple-
mentation supports the sporadic server policy. Acceptable
level values for a given policy are not standardized, nor the
SCHED_RR policy’s time quantum. They can be determined
at runtime thanks to the following functions:
sched_get_priority_min()

Return the minimal priority level value for a given
scheduling policy. quantum for the SCHED_RR policy.

sched_get_priority_max()
Return the maximal one.

sched_rr_get_interval()
Return the current time quantum for the SCHED_RR
policy.

Another attribute, part of earlier POSIX.1 versions, can
influence scheduling: The nice value. According to the stan-
dard, it is a per-process value between 0 and 2·{NZERO}−1,
where the symbolic constant {NZERO} must be at least 20.
In practice, in all the surveyed systems, {NZERO} is defined
to be 204. All BSD systems also accept 2 · {NZERO} as
a valid, distinct value, as they always have historically.
Linux’s implementation of threads causes it to have a nice
value per thread. POSIX leaves the exact effect of the
nice value mostly at the implementation’s discretion. Its
only requirement is that it must not influence scheduling of
threads or processes with policies SCHED_FIFO or SCHED_RR
in any way. In all the surveyed implementations, the nice
value only has an effect coupled with the SCHED_OTHER
policy or other ones that can be assimilated to timesharing,

4In FreeBSD, it has always been 0, as inherited from 4.4BSD, and
is not exposed as a symbolic constant to users although it should.
This is going to be fixed in this project’s course.



i.e., SCHED_BATCH in Linux, and SCHED_IA (interactive) and
SCHED_FSS (fair-share) in illumos, with for the latter the
addition of the fixed-priority one (SCHED_FX).

Modification of the nice value can be done through the
following functions:
nice() Increment (or decrement) the nice value

of the calling process.
setpriority() Directly set the nice value of some pro-

cess, or all processes in a process group or belonging
to some user.

These functions take and/or return offset nice values, that
is, the nice value minus {NZERO}, whose range is thus typi-
cally -20 to 19 or 20. The counterpart of setpriority() for
reading the (offset) nice value is getpriority(). Function
nice() not only modifies the value but also returns the
new (offset) nice value after incrementation.

2) Live Threads: This is the list of functions that can
modify scheduling attributes on live threads:
pthread_setschedparam()

Set a thread’s scheduling policy and parameters.
pthread_setschedprio()

Change a thread’s sched_priority attribute.
Function pthread_setschedparam() has a counterpart to
read the scheduling attributes, called pthread_getsched-
param(). Function pthread_setschedprio() has no such
counterpart.

Users must watch out for discrepancies between the
process and thread interfaces. In particular, names are
confusing: sched_setscheduler() maps to pthread_-
setschedparam(), whereas sched_setparam() is similar
to but subtly different from pthread_setschedprio(). As
some thread’s priority is changed using the above functions,
if the thread is runnable, it must be conceptually moved
from its old priority’s list to its new priority’s one. In this
case, it must be inserted at tail except if the change of
priority was performed through pthread_setschedprio()
and, as a result, either its priority decreased, in which
case insertion must happen at head, or stayed the same,
in which case no removal and insertion should take place
and the thread should keep its position in the (unchanged)
list. Thus, pthread_setschedprio() performs a different
thread re-scheduling than pthread_setschedparam(),
or the sched_setparam() or sched_setscheduler()
process functions when only changing the priority level.
The other difference between sched_setparam() and
pthread_setschedprio() is straightforward: The former
allows to change all parameters, whereas the latter can
only change sched_priority.

Fortunately, in practice, these differences are mostly
unimportant. The latter does not matter for most policies
as they only have a single parameter, sched_priority. The
former can be important to implement userland mechanism
to bound priority inversion when using semaphores or if
the operating system does not provide the mutex protocols
PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT. But

besides being a relatively rare case, the implementations
we have surveyed do not implement the re-scheduling dis-
tinctions above and have all these functions behave as the
standard-prescribed pthread_setschedprio().

3) Thread Attributes: Concerning threads, it is also pos-
sible to change the attributes related to scheduling in some
pthread_attr_t object to influence a future thread cre-
ation with the following functions:
pthread_attr_setinheritsched()

Set the inheritsched attribute indicating whether the
created thread will inherit the scheduling policy, its
parameters and the thread contention scope, or if those
set in the attribute objects will be used instead. Possible
values are PTHREAD_INHERIT_SCHED and PTHREAD_EX-
PLICIT_SCHED.

pthread_attr_setschedpolicy()
Set the scheduling policy to use on thread creation,
if at that time the inheritsched attribute’s value is
PTHREAD_EXPLICIT_SCHED.

pthread_attr_setschedparam()
Set the scheduling parameters to use on thread creation,
if at that time the inheritsched attribute’s value is
PTHREAD_EXPLICIT_SCHED.

pthread_attr_setscope()
Set the scheduling scope to use on thread creation,
if at that time the inheritsched attribute’s value is
PTHREAD_EXPLICIT_SCHED.

Each of these functions has a counterpart to retrieve
the information it sets, whose name can be obtained
by substituting set with get. We can draw a parallel
between some of these functions and those that operate
on live threads. The pthread_attr_setschedpolicy()
and pthread_attr_setschedparam() functions combined
provide the same functionality as pthread_setsched-
param(), whereas pthread_attr_setschedparam() has
roughly the same as pthread_setschedprio().

4) Spawn Attributes: Process spawning via posix_spawn
can be configured by passing a posix_spawnattr_t at-
tributes object, whose scheduling-related attributes can be
set by the following functions:
posix_spawnattr_setflags()

Allows to set a number of flags controlling which pro-
cess attributes must be changed as prescribed by the
posix_spawnattr_t attributes object. The scheduling-
related flags are:
POSIX_SPAWN_SETSCHEDPARAM

If set, apply the parameters recorded by posix_-
spawnattr_setschedparam().

POSIX_SPAWN_SETSCHEDULER
If set, apply the parameters recorded by both
posix_spawnattr_setschedpolicy() and posix_-
spawnattr_setschedparam().

posix_spawnattr_setschedpolicy()
Set the scheduling policy.



posix_spawnattr_setschedparam()
Set the scheduling parameters.

Again, each of these functions has a counterpart to retrieve
the information it sets, whose name can be obtained by
substituting set with get.

5) Mutexes: We hereby list the functions operating on
mutexes influencing how the processes holding them are
scheduled:
pthread_mutexattr_setprotocol()

Sets the priority inversion avoidance protocol that
the mutexes created with the passed attributes object
should follow. Possible values are:
PTHREAD_PRIO_NONE

Do nothing. This is the default value.
PTHREAD_PRIO_INHERIT

Have holders of such a mutex run at least at the
highest priority among all threads blocking on this
lock.

PTHREAD_PRIO_PROTECT
Have holders of such a mutex run at least at the
priority ceiling for this lock.

pthread_mutex_setprioceiling()
Sets the priority ceiling used for mutexes that use the
PTHREAD_PRIO_PROTECT priority inversion avoidance
protocol.

Again, and as always for functions modifying an attributes
object, each of these functions has a counterpart to retrieve
the information it sets, whose name can be obtained by
substituting set with get.

IV. Rationalizing FreeBSD’s Priorities
A. The Starting Point

We wanted to make sure that certain batch jobs, includ-
ing long running compilations, would not disturb other
interactive and batch executions. Of course, it is possible
to give a high nice value to the former, but on FreeBSD
this currently does not have much practical effect for CPU-
bound jobs. So we turned instead to using the idle class
instead, so that the special batch jobs can always be im-
mediately preempted by any other normal process.

Launching new processes in the idle class is as easy as
typing, e.g.:
$ idprio 16 ./myjob

at a command shell, thanks to the provided idprio(1)
command-line utility. This currently requires privilege, as
detailed in subsection II-C.

If these jobs are to be launched always by some particular
user, an alternative is to use login classes to automatically
set the priority of this user’s new login shells, such as
those spawned by su -. To this end, the administrator
can change the login.conf(5) configuration file by using
the priority capability for the target user. This capa-
bility is documented to accept (offset) nice values, but
also accepts higher or lower values that are interpreted as
requests to put the calling process into the idle or real-time

class respectively5. The intervention of an administrator
will soon not be required anymore, as we have recently
committed changes that make the login class machinery
take into account a priority capability in each user’s
~/.login_conf file.

One can also use the command idprio(1) (or rtprio(1)
indifferently) to see in which class some process is. A job
launched by the above command and executing such a
command will report:
idprio: idle priority 16
Strangely, we noticed that launching idprio(1) on nor-

mal processes returned something a bit different:
idprio: normal priority

where no priority level is reported. This piqued our interest,
and thanks to the simplicity of the rtprio(2) interface,
in minutes we had our own program to query the prior-
ity status of a process and that would always report the
priority even if the target process was in the normal class.
Launching it from a shell and with an argument of 0 for
the PID, we got:
$ ./prio
Current priority: 0.
RT prio: Type: RTP_PRIO_NORMAL, prio: 0.

where the first line reports the result of calling getprior-
ity(2) and the second that of calling rtprio(2). Curious
about the reported priority level, we soon built a second
program to change it, since there is no utility similar to
idprio(1) or rtprio(1) for the RTP_PRIO_NORMAL class.
With it, we tried to set the priority level to 10:
$ ./set_rtprio 0 NORMAL 10
Current priority: 0.
RT prio: Type: RTP_PRIO_NORMAL, prio: 10.

which seemed to work, as the reported priority immedi-
ately after having called rtprio(2) with RTP_SET was the
requested one. However, reissuing almost immediately the
first program above (./prio) gave the same first result, as
if we had never changed the level in the meantime.

While we were thinking about what could be going on,
we nonchalantly launched ./prio again several times in a
row, which at some point and to our astonishment, reported
this:
$ ./prio
Current priority: 0.
RT prio: Type: RTP_PRIO_NORMAL, prio: 1.

i.e., the priority level had increased. Continuing, we could
make that level slowly but steadily increase. But as we
would stop launching it for a while, the first subsequent
launch would report a lower priority than the previous
launch, usually 0 after enough wait.

Something was definitely going on. rtprio(2) was prob-
ably reporting dynamic priorities for processes in the RTP_-
PRIO_NORMAL class, which a later analysis would confirm.
These are most often useless to users or administrators as

5This has been the case since 1998. We have recently changed the
manual page to reflect the real range of admissible values and their
meaning.



they are kernel-controlled. Worse, setting a level seemed
to have no effect, but we were worried it could affect at
least temporarily process scheduling. A later analysis con-
firmed it did not, although the level was temporarily stored
in a struct thread field always recomputed before the
scheduler actually makes a decision based on it.

We were also curious about the RTP_PRIO_ITHD class.
Having listed processes with ps -o rtprio -axl and
sorted them by their PRI value (the kernel’s internal
value), we took the first two processes having highest
priorities, and were granted by this (most columns elided
for clarity):

RTPRIO PID PRI NI COMMAND
kernel:4294967248 14 -68 0 [usb]
intr:48 12 -52 0 [intr]

which is somewhat surprising given that:
• The prio field of struct rtprio is an unsigned byte.
• There is no kernel class, and no RTP_PRIO_KERNEL sym-

bolic constant.
We leave as an exercize to the curious reader to list

all threads pertaining to the above processes and look at
their RTPRIO and PRI values, e.g., by typing (with the
appropriate process IDs on its system):
$ ps -o tid,rtprio,pid,pri,ni,command \
-p 12 -p 14 -H | tail +2 | sort -k4 -n
and guess what is their relationship to the same values
listed for their process. As a bonus question, can you figure
out a relationship between PRI and RTPRIO for the same
thread/process?

Running our small ./prio program on these two pro-
cesses, we got:
$ ./prio 12
Current priority: 0.
RT prio: Type: RTP_PRIO_ITHD, prio: 0.
$ ./prio 14
Current priority: 0.
RT prio: Type: RTP_PRIO_NORMAL, prio: 0.

which is again astonishing given it appears in contradiction
with the PRI values reported by ps above, which seemed
to indicate that process 14 ([usb]) had a higher priority
than process 12 ([intr]).

Finally, we noticed that, in repeated launches, ./prio
12 most of the time reports 0 for the prio field, but very
rarely reports an odd, sometimes big value.

We had seen enough. There were probably a lot of strange
behaviors to analyze in the area, bugs to fix, documentation
to write. Having been interested in scheduling matters for
a long time [7], we thought it would also be a good entry
point to FreeBSD’s schedulers.

B. Goals
We first expose a list of unsurprising high-level goals

stemming from generally good design, and then more pre-
cise ones prompted by our peculiar experience of using
the scheduling priorities interfaces, as related notably in

the previous subsection, and analyzing and reviewing their
implementations, which led to the series of changes reported
in the next subsection.

1) High-Level: First, FreeBSD needs to provide fully
documented scheduling priority interfaces with stable and
predictable behavior. Moreover, considering that the users
of these interfaces are or will mostly be developers of real-
time applications such as multimedia ones, users wanting
to launch processes that should not disturb the rest of
the system or on the contrary should imperatively always
run, or administrators wanting to efficiently monitor and
understand system behavior, these interfaces must depend
on documented behavior and not on their chosen imple-
mentations, which can be subject to change, as recently
happened (see subsection II-B).

Second, we intend to continue supporting both the rt-
prio(2) and POSIX interface, the first as FreeBSD’s native
one and with the second’s implementation on top of the
first. Among the reasons for this choice, there are backwards
compatibility, an economy of changes since this preserves
the existing design, but also some leeway to experiment
with changes which are not clearly, or definitely not POSIX-
compliant. At the same time, we intend that both interfaces
mostly provide the same functionality in the same fashion,
to the extent permitted by POSIX.

Third, reporting tools available to the user and adminis-
trator must be documented and, to avoid cognitive burden,
exhibit information in exactly the same format, or at least
the spirit, used to change the policies through the program-
ming interfaces.

Four, there must ideally be not foot-shooting possible in
the default configuration. This includes an administrator
or user inadvertently locking the machines or messing with
the priority of kernel processes/threads.

2) Peculiar: From the high-level goals above, given the
particular nature of the problem, we have drawn some
additional ones.

First, we intend to change the semantics of levels in class
RTP_PRIO_NORMAL to coincide with nice values. Users and
administrators are uninterested in having some dynamic
priority returned in a range that is not well defined and
can change between releases. Using nice values instead is
familiar and stable, both for reporting but also to give real
meaning to change requests through the rtprio(2) API.
Logically, this change should be propagated to scheduling
policy SCHED_OTHER, as it is the counterpart of class RTP_-
PRIO_NORMAL. However, we are not completely sure doing
so can be considered POSIX-compliant, since according
to it the system must choose a thread from the highest
priority level list to run on an available processor, and even
niced processes are at some point executed even if there
are other higher priority timesharing processes. That said,
Linux and illumos strictly speaking also violate this rule.

Second, we want to block tampering with kernel pro-
cesses/threads scheduling attributes by default, even by
the administrator. But, in the course of experimentations,



it may be useful to allow them to be changed, which could
be enabled through some sysctl(8) knob.

C. Fixes and Improvements
In this subsection, we list all changes we have already

coded and tested, in a format similar to release notes. At
time of this writing, they have not been publicly disclosed
yet.

1) Proper Separation of Concerns: Do not use internal
scheduler classes as the value returned in field type of
struct rtprio.

Some kernel thread was using an internal function of
the rtprio(2) implementation to change its own priority,
blocking other changes. Use the scheduler API instead.

2) Input Validation: The scheduling policy passed to
the POSIX API for threads is now checked, and rejected
if unknown instead of being treated as SCHED_OTHER.

If scheduling attributes passed at thread creation cannot
be honored, e.g., because they are incorrect or the creating
thread does not have enough privileges, thread creation
now fails as mandated by POSIX.

3) Thread Attributes: Stop resetting the scheduling pa-
rameters (i.e., currently, the priority level) when setting the
scheduling policy via pthread_attr_setschedpolicy().

Enforce invalid defaults on missing scheduling attributes
if they have to be reset at thread creation. More concretely,
callers that set the inheritsched attribute to PTHREAD_EX-
PLICIT_SCHED will be forced to call both pthread_attr_-
setschedpolicy() and pthread_attr_setschedparam()
at least once, else thread creation with these thread at-
tributes will fail.

4) Translation of Interfaces and Convergence: Factor-
ization of in-kernel duplicated formulas, between the rt-
prio(2) space and that of POSIX for common classes/-
policies (FIFO, realtime).

Suppress all translation in userland, more precisely in
the libthr threading library, and have them performed
by the kernel only (see also IV-C5).

Implement a new SCHED_IDLE scheduling policy, with
32 priority levels, as a straightforward translation of the
RTP_PRIO_IDLE scheduling class.

Return EOVERFLOW in case translation fails (no corre-
sponding classes). We intend that, as this project ends,
translations are always possible between internal priorities,
rtprio(2) and POSIX ones, so EOVERFLOW should never
be returned in practice. Still, applications will have to be
prepared to handle this case as any error case, or specifically,
since we may not be able to maintain this property in the
future.

The way has been paved so that it is possible to easily
change the range bounds of admissible priorities for each
(POSIX) scheduling policy, which we may do as a conse-
quence of a strict interpretation of the standard regarding
priority levels.

Assert that there is exactly one internal priority level
reserved for one level of the RTP_PRIO_FIFO, RTP_PRIO_-

REALTIME and RTP_PRIO_IDLE classes, since the implemen-
tation assumes this property in a few places (now very few,
following code factorization).

In Linuxulator’s ioprio_get()’s implementation, add
mapping of processes in the RTP_PRIO_FIFO class to the
appropriate ioprio priority exactly as those in class RTP_-
PRIO_REALTIME. Generally improve Linuxulator’s ioprio
conversion to rtprio(2).

Fix the Linuxulator’s priority level conversions between
Linux’s POSIX levels and our native ones, which was math-
ematically slightly incorrect and violated layers (assumed
a particular translation between POSIX and rtprio(2)
levels). This also entailed suppressing duplicated code.

The Linuxulator now supports the (Linux’s) scheduling
policies SCHED_IDLE and SCHED_BATCH. The first one has
only a single admissible priority level (0), which is currently
translated into a value near the median of FreeBSD’s admis-
sible range for SCHED_IDLE. Policy SCHED_BATCH is for now
simply translated to FreeBSD’s SCHED_OTHER, since the
ULE scheduler is normally able to automatically determine
whether some thread is to be considered interactive. We are
nonetheless planning to introduce a native SCHED_BATCH
by allowing to pass a hint to the scheduler.

5) System Calls: Provide two new scheduling system
calls operating on threads, thr_sched_set() and thr_-
sched_get(), that accept POSIX scheduling attributes
natively. Modify the thr_new() system call to accept them
as well. This allows to suppress translation code duplication
(see also IV-C4). Make thr_sched_set() accept a special
policy number, SCHED_CURRENT, to indicate that only the
scheduling parameters are to be changed, in support of
pthread_setschedprio().

The computation of some process’ synthetic scheduling
attributes based on the maximum priority of its threads
was wrong, because the ordering of rtprio(2) classes is not
congruent with that of their numerical values. Moreover, its
code was duplicated in the Linuxulator. It has been factor-
ized and fixed, and is now based on the scheduler’s internal
priorities in order to cirmcumvent translation problems for
non-exported scheduler priority ranges.

Change the behavior of the POSIX process API to always
operate on all threads of a process, instead of just the main
thread. With this change, FreeBSD will behave like illumos
and NetBSD. Linux is in a league of its own, as it operates
on a process’ main thread except if the passed PID is 0,
in which case it does so on the calling thread instead. Fix
the Linuxulator to behave exactly this way.

Allow callers of the POSIX process API that mean to
modify settings to be informed of a concurrent change of
priority affecting some of the process’ threads in a way
that can prevent the requested change to be completely
performed (because, e.g., some thread had its priority low-
ered and the caller has insufficient privileges to raise it),
in which case they may decide to reissue the call later on
to obtain some “definitive” result (success or failure).



6) Privilege Checks: Factorize privilege checks to assign
a process to the RTP_PRIO_FIFO, RTP_PRIO_REALTIME or
RTP_PRIO_IDLE classes. This fixes insufficient checks in
Linuxulator’s implementation of ioprio_set().

Remove incoherent checking for privilege PRIV_SCHED_-
SETPOLICY at thread creation when the scheduling
attributes specify to assign the process to RTP_PRIO_-
FIFO or RTP_PRIO_REALTIME, instead of checking for
PRIV_SCHED_RTPRIO.

Remove unused PRIV_SCHED_SETPARAM privilege.
Always require privilege to be able to raise priorities,

whether by changing the class or the level. For consistency
with setpriority(), we have reused the PRIV_SCHED_SET-
PRIORITY privilege already checked to decrease the nice
value. Make module mac_priority(4) grant this privilege
to users that are members of group realtime, because
without they would not be able to actually put a process
in the realtime class. A consequence of this change is that
processes put in the idle class cannot rise their level within
that class even if they have privilege PRIV_SCHED_IDPRIO.

Remove the additional, inconsistent check for the
PRIV_SCHED_SET privilege in the implementation of
sched_setscheduler(), and then remove this privilege
entirely as it is no more of use. Generally fix insufficient
privilege checks for tampering with processes or just
obtaining their current attributes, in particular raising the
priority level or changing the scheduling class.

7) Miscellaneous: Internally represent POSIX schedul-
ing attributes with a new structure, struct sched_attr,
containing the scheduling policy and its parameters.

Make sure that the necessary infrastructure is present
on the kernel side to support versioning of the struct
sched_attr structure and scenarios where an old libthr
is used on a newer kernel (e.g., compatibility jails), and
even converse ones where libthr is newer (this part is not
implemented, but now could be if desired). To this end, we
ensured that the threads’ scheduling-related system calls
properly support versioning of the parameter holding a
struct sched_attr structure. Decouple the definitions of
this structure as seen by userland (in libthr) and by the
kernel, since the latter will have to support more than one
version as the current one is bumped.

Make libthr cache results of the sched_get_prior-
ity_min() and sched_get_priority_max() system calls,
and remove its hardcoded priority bounds. Use this cache
also to outright reject unknown policies that some caller
wants to set on a thread attributes object (via pthread_-
attr_setschedpolicy()).

Add checks that priority levels are in compliance with
POSIX for SCHED_FIFO and SCHED_RR: non-negative, at
least 32 levels.

Add an internal explicitly invalid priority value, to be
used as a sentinel in several cases.

Cleanup header pollution by removing the inclusion of
sys/sys/rtprio.h from sys/sys/proc.h. Also remove all
mentions of struct rtprio in the latter.

Add the proper event audit tags to system calls related to
scheduling. These events have existed for a long time (since
2006 for most), but have been used only in the Linuxulator.

Enforce the separation of concerns between the sys_*()
and kern_*() functions that implement the thr_new()
system call. Functions in the first family are system calls’
entry points, whereas those in the second are internal kernel
functions that operate on structures already allocated from
kernel memory.

V. Status and Future Work

As of this writing, the changes we have done so far (see
subsection IV-C) have been lightly tested. The next steps
are to introduce systematic tests for them in FreeBSD’s
test suite and have them reviewed. Implementations and
the scheduler were so intertwined that is was hard to come
with independent, incremental changes that can make sense
on their own. Moreover, some of them are significantly
modified by later ones in the series, so we felt that sub-
mitting the first ones separately for review would mostly
waste reviewers’ and the author’s time. Given the amount
of changes, we hope that the necessary code reviews will
not take too much time. Some of the design choices we
made are debatable, such as whether policy SCHED_OTHER
should only have a single priority level, and we may change
our views on them as long as the overall consistency is
maintained and they do not violate the high-level goals
stated in subsection IV-B1.

A new round of changes concerning the schedulers’ view
of priorities is in progress. Besides cleaning sometimes
ambiguous internals, they will enable accurate, readily
comprehensible and stable reporting of thread’s scheduling
attributes. To this end, they will be complemented by a
new rtprio(2) class for kernel threads.

Acknowledgments

We would like to thank the FreeBSD Foundation for
sponsoring this work, and in particular Ed Maste for al-
lowing us to work on this project.

References

[1] G. Lipari and L. Palopoli, “Real-time scheduling: from hard to soft
real-time systems,” ArXiv, vol. abs/1512.01978, 2015. [Online].
Available: https://api.semanticscholar.org/CorpusID:12204476

[2] B. O. Gallmeister and C. Lanier, “Early experience with
POSIX 1003.4 and POSIX 1003.4 A,” [1991] Proceedings Twelfth
Real-Time Systems Symposium, pp. 190–198, 1991. [Online].
Available: https://api.semanticscholar.org/CorpusID:206524607

[3] M. G. Harbour, “REAL-TIME POSIX: AN OVERVIEW,” 1993.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
1719497

[4] B. O. Gallmeister, POSIX.4: programming for the real world.
USA: O’Reilly & Associates, Inc., 1995.

[5] “IEEE Standard for Information Technology–Portable Operating
System Interface (POSIX(TM)) Base Specifications, Issue 7,”
IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008), pp.
1–3951, 2018.

[6] J. Evans, “Kernel-Scheduled Entities for FreeBSD,” 2000. [Online].
Available: https://api.semanticscholar.org/CorpusID:264752129

https://api.semanticscholar.org/CorpusID:12204476
https://api.semanticscholar.org/CorpusID:206524607
https://api.semanticscholar.org/CorpusID:1719497
https://api.semanticscholar.org/CorpusID:1719497
https://api.semanticscholar.org/CorpusID:264752129


[7] O. Certner, “Programming Environment, Run-Time System
and Simulator for Many-Core Machines,” Theses, Université
Paris Sud - Paris XI, Dec. 2010. [Online]. Available:
https://theses.hal.science/tel-00826616

https://theses.hal.science/tel-00826616

	I Introduction
	II The rtprio(2) model
	II-A Interface
	II-B Scheduling Types/Classes
	II-C Administration

	III The POSIX model
	III-A Overview
	III-B Scheduling Policies
	III-C Scheduling Interface
	III-C1 Live Processes
	III-C2 Live Threads
	III-C3 Thread Attributes
	III-C4 Spawn Attributes
	III-C5 Mutexes


	IV Rationalizing FreeBSD's Priorities
	IV-A The Starting Point
	IV-B Goals
	IV-B1 High-Level
	IV-B2 Peculiar

	IV-C Fixes and Improvements
	IV-C1 Proper Separation of Concerns
	IV-C2 Input Validation
	IV-C3 Thread Attributes
	IV-C4 Translation of Interfaces and Convergence
	IV-C5 System Calls
	IV-C6 Privilege Checks
	IV-C7 Miscellaneous


	V Status and Future Work
	References

