
Towards a Robust FreeBSD-Based Cloud: Porting
OpenStack Components

Chih-Hsin Chang
SUSE

Taipei, Taiwan
zespre.chang@suse.com

Li-Wen Hsu
FreeBSD Foundation

Taipei, Taiwan
lwhsu@FreeBSD.org

Abstract—This paper presents a pioneering initiative to in-
tegrate OpenStack, an open-source cloud computing platform,
with FreeBSD, a robust Unix-like operating system. Traditionally,
OpenStack has been closely associated with Linux-based environ-
ments, leveraging specific Linux features and technologies. This
integration aims to expand OpenStack’s applicability by har-
nessing FreeBSD’s advanced networking, security, and efficient
resource management capabilities.

The project scope involves adapting OpenStack’s key compo-
nents to function seamlessly within FreeBSD’s system architec-
ture, focusing on virtualization with bhyve and FreeBSD’s unique
networking stack. A Proof of Concept (PoC) has been successfully
developed, demonstrating the viability of this integration and
laying a foundation for further development.

We address several critical challenges in this integration
process, including adapting libvirt for bhyve, managing VLANs,
modifying Open vSwitch for FreeBSD, ensuring efficient DHCP
services, and aligning FreeBSD’s network namespace and firewall
functionalities with OpenStack’s requirements. The project also
tackles the adaptation of OpenStack’s oslo.privsep library to
FreeBSD’s privilege model and addresses the complexities of
nested virtualization and VM console access within FreeBSD.

Future work involves expanding the integration to more Open-
Stack components, enhancing system performance, and fostering
collaboration within the FreeBSD and OpenStack communities.
This integration represents a significant advancement in cloud
computing, offering a versatile platform that combines the
strengths of both OpenStack and FreeBSD. The project invites
collaboration and contribution from the community to overcome
the challenges and fully realize the potential of this innovative
integration.

Index Terms—FreeBSD, cloud, OpenStack, libvirt, bhyve,
Open vSwitch

I. BACKGROUND

A. OpenStack

OpenStack, a prominent open-source cloud computing plat-
form, has revolutionized the way organizations manage and
deploy cloud resources. Since its inception, OpenStack has
gained traction for its flexibility, scalability, and robust feature
set, allowing it to cater to a diverse range of cloud computing
needs. At its core, OpenStack provides a comprehensive suite
of services that handle compute, storage, and networking
resources in cloud environments, making it a popular choice
for deploying public and private clouds alike.

• Keystone is the identity service used by OpenStack for
authentication and high-level authorization. It provides
a central directory of users mapped to the OpenStack

services they can access. Keystone supports multiple
forms of authentication including standard username and
password credentials, token-based systems, and AWS-
style logins. It also integrates with existing backend
services such as LDAP.

• Glance is the image service for OpenStack, allowing
users to discover, register, and retrieve virtual machine
images. Glance has a RESTful API that allows querying
of VM image metadata as well as retrieval of the actual
image. It can store images in a variety of backends,
including Swift, the OpenStack object storage service.

• The Placement service in OpenStack is responsible for
tracking resource inventories and usages. It helps in
efficiently scheduling and placing VM instances across
the available hardware resources based on defined crite-
ria like CPU, memory, and disk space. This service is
essential for optimizing resource allocation and ensuring
effective utilization of the infrastructure.

• Cinder is the block storage service for OpenStack. It
provides persistent block-level storage devices for use
with OpenStack compute instances. The service manages
the creation, attachment, and detachment of block devices
to servers and works with a variety of storage backends,
including NAS and SAN systems, as well as local Linux
server storage.

• Swift is the object storage service in OpenStack. It’s
designed to store and retrieve unstructured data, such as
documents, images, and videos, at a large scale. Swift
ensures data replication and distribution across various
storage servers, offering fault tolerance, high availability,
and scalability.

• Neutron, often referred to as the network component
of OpenStack, plays a crucial role in managing the
network infrastructure in cloud environments. It enables
users to define networks and attach virtual interfaces to
them. Neutron provides an API that lets you define and
request network resources, such as networks, subnets,
and routers. It’s designed to be flexible and pluggable
to support a variety of networking technologies and
vendors, ranging from simple Linux networking to com-
plex, high-performance networks using SDN (Software-
Defined Networking) and NFV (Network Functions Vir-
tualization). Neutron also enables advanced network ser-



vices like LBaaS (Load Balancer as a Service), FWaaS
(Firewall as a Service), and VPNaaS (VPN as a Service).
Its ability to provide isolated networks to tenants in a
multi-tenant environment makes it a key component for
cloud security and organization.

• Nova, the compute service of OpenStack, is essentially
the backbone of the OpenStack cloud platform, manag-
ing and automating pools of compute resources. Nova
interacts with other OpenStack services like Keystone for
authentication, Glance for images, and Neutron for net-
working. It schedules and runs virtual machine instances
based on user requests and available resources, which
includes handling the lifecycle of compute instances
(create, schedule, run, and terminate). Nova is designed
to scale horizontally on standard hardware, and it sup-
ports various types of hypervisors including KVM, Xen,
VMware, and Hyper-V, making it a versatile solution for
a wide range of infrastructure needs. Nova’s architecture
is highly modular, with a central API that interacts with
several other components like the scheduler, the compute
workers, and various agents. This modularity allows it
to be adaptable and flexible to different deployment
scenarios.

• Ironic is an OpenStack project that provides a service
for provisioning bare metal machines instead of virtual
machines, functioning as a bare metal hypervisor API.
It blends the capabilities of traditional compute provi-
sioning software with the agility and the user-driven
provisioning model of a cloud environment.

• Horizon is the dashboard and the web-based user inter-
face for OpenStack services. It allows cloud administra-
tors and users to manage various OpenStack resources
and services. Horizon provides a modular web interface
for accessing the different OpenStack services, including
Nova, Swift, and Keystone.

Traditionally, OpenStack has been primarily associated with
Linux-based environments. Its components are predominantly
designed and optimized for Linux, leveraging various Linux-
specific features and technologies. This strong affinity with
Linux has led to widespread adoption in Linux-dominated
environments, but it also poses certain limitations, particularly
in terms of cross-platform compatibility. Recognizing this gap,
there’s an emerging interest in exploring the feasibility of
integrating OpenStack with other operating systems, such as
FreeBSD, to expand its reach and capabilities.

II. INTRODUCTION

A. Project Scope

1) Selective Porting of OpenStack Components: The
project’s scope is strategically focused on porting only the
essential components under the vast OpenStack umbrella to
FreeBSD. This targeted approach allows for efficient allocation
of resources and expertise, ensuring that the most critical
and foundational elements of OpenStack are adapted first for
FreeBSD compatibility. The selection of components for port-

ing is guided by their fundamental roles in cloud infrastructure
and their relevance to the project’s overarching goals.

2) Documentation for Reproducibility and Promotion:
A key aspect of the project is to meticulously document
the build, code-patching, and installation steps of OpenStack
components on FreeBSD. This documentation serves a dual
purpose: it not only ensures the reproducibility of the setup
for future deployments and development but also acts as a
valuable tool for promoting the project. By providing clear,
step-by-step guides, the project aims to attract interest and
encourage participation from the community, making it easier
for new contributors and users to get started with OpenStack
on FreeBSD.

3) Deployment Replication in FreeBSD.org Cluster: In
line with the principle of ”dogfooding,” the project involves
replicating the OpenStack deployment in the FreeBSD.org
cluster by closely following the produced documentation. This
replication serves as a real-world test of the documentation’s
accuracy and the deployment process’s effectiveness. It also
helps in identifying any gaps or areas for improvement,
ensuring that the final documentation is robust and reliable
for anyone looking to implement a similar setup.

4) Creation of FreeBSD Ports: A significant objective of
the project is to convert the ported OpenStack components
and their dependencies into FreeBSD ports. This conversion
is essential for streamlining the installation process, making
it more accessible and user-friendly. It includes not only the
OpenStack components themselves but also any dependencies
that are currently missing from the FreeBSD Ports collection.
By creating these ports, the project aims to enhance the overall
ease of setting up and managing OpenStack on FreeBSD, con-
tributing to the broader adoption and success of the platform
in various computing environments.

B. Methodology

Our approach to achieving this integration involves a multi-
faceted strategy. Firstly, we focus on porting and adapting
OpenStack components to be compatible with FreeBSD’s
system architecture. This includes modifying existing Open-
Stack modules to work with FreeBSD’s kernel and user-space
utilities, as well as developing new tools and drivers where
necessary.

Secondly, we address the challenge of networking and vir-
tualization, which are integral to OpenStack’s operation. This
involves adapting FreeBSD’s networking stack and virtualiza-
tion technologies, such as bhyve, to work with OpenStack’s
network and compute services.

Lastly, our methodology includes extensive testing and
validation to ensure that the integrated OpenStack-FreeBSD
system is stable, efficient, and secure.

III. PROJECT STATUS

A. Development Environment

The project’s development is conducted on a virtual-
ized platform, powered by a physical infrastructure running



FreeBSD 13.2-RELEASE. This robust hardware setup under-
pinning the virtual machines comprises:

• Processors: 2 x Intel® Xeon® E5-2680 v4
• Motherboard: Supermicro® X10DRL-i
• Memory: 64 GB RAM
• Storage: 1 TB SSD

The virtualized development environment was later up-
graded to FreeBSD 14.0-STABLE, ensuring alignment with
the latest stable FreeBSD release.

B. OpenStack Xena Integration

Throughout the development, the team has been working
with OpenStack’s Xena release. This version of OpenStack
was chosen for its specific features and stability, making it
suitable for the project’s goals and objectives.

C. Porting OpenStack Components

A core part of the project involved porting selected Open-
Stack components to FreeBSD, each requiring a certain degree
of source code modification. The components, along with
their dependencies, were installed from source repositories
using pip. The build and installation processes, along with
necessary modifications, are comprehensively documented in
the project’s GitHub docs repository. The status of the ported
components is as follows:

• Keystone: Operational with minimal source code modifi-
cations.

• Glance: Functional with minimal changes to the source
code.

• Placement: Successfully running with minor code adjust-
ments.

• Neutron: Configured with a flat network, backed by Open
vSwitch.

• Nova: Integrated with bhyve as the hypervisor and libvirt
for API and hypervisor management.

client

keystoneglance

placement

server

Neutron

metadata
agent

dhcp
agent

ovs
agent

api
Nova

socat
manager

vm1

vm2
libvirtd

Compute Host

bhyve int
bridge ext

bridge

eth0

conductor
scheduler

serial
proxy

compute

virt-driver

db

Fig. 1. The PoC of OpenStack on FreeBSD

D. Instance Creation and Network Connectivity

A significant achievement in this development phase is the
creation of instances within the OpenStack environment based
on the Xena release. These VM instances have demonstrated
network connectivity, proving the functionality and effective-
ness of the Proof of Concept (PoC). This successful network
connectivity underlines the effective integration of the flat
network with Open vSwitch and the adaptation of OpenStack
components to FreeBSD. The ability to create operational
instances that communicate within the network validates the
project’s success in adapting OpenStack Xena to the FreeBSD
platform.

IV. CHALLENGES, WORKAROUNDS, AND PROPOSED
SOLUTIONS

A. Computing

The integration of OpenStack with FreeBSD encountered a
notable challenge in leveraging FreeBSD’s bhyve hypervisor
with OpenStack’s Nova component, which traditionally relies
on the libvirt library for managing virtual machines. Libvirt
acts as an abstraction layer supporting various hypervisors, but
its support for bhyve in FreeBSD was not as comprehensive
or mature as for Linux-centric hypervisors. This discrepancy



posed significant difficulties in achieving seamless integration
and full functionality. The challenge was to enable Nova,
which extensively uses libvirt, to effectively manage virtual
machines via FreeBSD’s bhyve hypervisor, ensuring compat-
ibility and performance on par with Linux-based hypervisors.

A potential workaround involved enhancing the existing lib-
virt driver for bhyve or developing a new custom driver specif-
ically tailored for OpenStack’s use case. This approach would
require modifying the Nova codebase to better communicate
with the bhyve hypervisor through libvirt, focusing on ensur-
ing that essential features and operations like VM creation,
management, and networking are fully supported and perform
efficiently. This solution might also involve contributing to
the development of libvirt’s support for bhyve, improving its
capabilities to match the requirements of OpenStack.

The ideal solution would be a fully-fledged, robust in-
tegration of bhyve with libvirt, where libvirt’s support for
bhyve is as comprehensive and efficient as it is for other
major hypervisors. This would involve upstream contributions
to both libvirt and OpenStack’s Nova, ensuring that the
libvirt-bhyve driver comprehensively covers all virtualization
features and APIs required by Nova. This solution would
allow OpenStack on FreeBSD to leverage bhyve’s strengths,
such as its lightweight architecture and performance benefits,
while maintaining compatibility with OpenStack’s broader
ecosystem. Achieving this would require close collaboration
between the FreeBSD, libvirt, and OpenStack communities to
ensure alignment of goals, technical approaches, and thorough
testing to validate functionality and performance.

B. Networking

1) Overlay Networks: Integrating OpenStack’s Neutron ser-
vice with FreeBSD presented a challenge in porting advanced
networking features like VLAN, VXLAN, and GRE, which are
predominantly designed for Linux-based environments. This
issue arose due to the incompatibility of these features with
FreeBSD’s networking stack, creating a significant hurdle in
achieving similar functionality for complex network setups in
a FreeBSD-based OpenStack deployment.

The project team opted to implement a ”flat” network
configuration in the Neutron ML2 (Modular Layer 2) plugin
to address this challenge within the project’s constraints. This
approach simplified the networking model by avoiding the
need for complex porting of Linux-specific network provision-
ing tools for overlay technologies. However, this workaround
introduced a notable limitation:

Lack of Tenant Network Isolation: The flat network
configuration does not provide tenant network isolation, a
crucial feature in multi-tenant cloud environments for security
and privacy. With all tenants sharing the same network space
in a flat network setup, the potential for security vulnerabilities
and conflicts between different tenant networks increases. This
lack of isolation is a significant drawback, compromising one
of the essential aspects of cloud networking - the ability to
segregate and secure tenant-specific network traffic.

The ideal solution would enable OpenStack on FreeBSD
to support advanced networking features, including over-
lay networks that offer tenant isolation. This could involve
adapting existing FreeBSD networking tools to support such
technologies or developing new tools and drivers that are
compatible with FreeBSD’s architecture. Achieving this would
allow FreeBSD-based OpenStack deployments to provide net-
work functionality and security comparable to Linux-based
environments, ensuring effective isolation of tenant networks.
Realizing this ideal solution would require collaborative efforts
between the OpenStack and FreeBSD communities, alongside
comprehensive development and testing, to ensure robust and
secure network operations.

2) Underlay Network: Integrating OpenStack’s Neutron
service with FreeBSD encountered a significant challenge
when it came to the mechanism driver. The Linux Bridge,
a mainstream driver in the Linux world, couldn’t be directly
applied to FreeBSD due to fundamental differences in their re-
spective kernel architectures and networking implementations.

Given this incompatibility, the workaround involved opt-
ing for an alternative mechanism driver that could function
within FreeBSD’s networking environment. Open vSwitch
was chosen as a more feasible option, as it offered greater
compatibility with FreeBSD compared to the Linux Bridge.
However, this choice was not without its own set of limitations,
particularly in terms of not fully utilizing FreeBSD’s native
networking capabilities.

The ideal solution would involve developing a FreeBSD-
specific mechanism driver for OpenStack Neutron. This driver
would be tailored to align with FreeBSD’s networking ar-
chitecture, effectively managing the network underlay in a
way that leverages the operating system’s inherent strengths.
The development of such a driver would require a deep
understanding of FreeBSD’s networking stack and a com-
mitment to optimizing performance and compatibility within
the OpenStack environment. This solution would ensure that
OpenStack on FreeBSD could deliver robust and efficient
networking capabilities, akin to what is achieved with the
Linux Bridge on Linux-based systems.

3) IP Address Issuance: Integrating OpenStack Neutron’s
DHCP services with FreeBSD faced a specific challenge due
to the absence of Linux network namespaces and veth(4)
pair devices. In Linux-based OpenStack deployments, Neutron
typically uses network namespaces to isolate DHCP servers
(like dnsmasq) and veth(4) devices to connect these isolated
DHCP servers to the network bridges. This setup segregates
the DHCP service scope efficiently. However, FreeBSD does
not natively support these Linux-specific features, making it
challenging to replicate this network isolation and connection
mechanism for DHCP services.

To work around these limitations, the project team disabled
the internal DHCP function within OpenStack and resorted
to using an external DHCP server to assign IP addresses to
VMs. While this provided a temporary solution, it introduced
a significant operational drawback:



Discrepancy in IP Address Management: The IP ad-
dresses designated by Neutron differed from those actually
assigned by the external DHCP server. This inconsistency
resulted in a breakdown of network connectivity, as the flow
rules on the Open vSwitch were configured to recognize
and handle IP addresses based on Neutron’s allocation. The
mismatch led to the dropping of outgoing packets from VMs
at the Open vSwitch, as these packets carried IP addresses not
recognized by the pre-defined flow rules.

The ideal solution for the DHCP challenge in FreeBSD-
based OpenStack involves adapting Neutron to utilize
FreeBSD’s vnet(9) and epair(4) features, which are
equivalents to Linux’s network namespaces and veth(4)
devices. This requires targeted modifications to Neutron’s
codebase to ensure compatibility with FreeBSD’s network
architecture. By aligning Neutron with FreeBSD’s existing
capabilities, the solution aims to restore efficient DHCP func-
tionality and network connectivity in OpenStack, leveraging
FreeBSD’s strengths in network isolation and interface man-
agement.

4) Security Groups: The challenge in implementing Open-
Stack’s security group functionality on FreeBSD stemmed
from two primary issues. First, the lack of iptables in
FreeBSD, as OpenStack Neutron heavily relies on iptables for
its security group function in Linux environments. Second, the
requirement of an additional Linux bridge to integrate iptables
into the network stack set up by Neutron - a component
not available in FreeBSD. These factors combined made it
challenging to directly use OpenStack’s security group func-
tionality in a FreeBSD-based setup.

vm

linux bridge

iptablestap veth

ovs

integration bridge

veth

vm

linux bridge

iptablestap veth

veth

Fig. 2. The security group implementation (iptables)

To navigate around the absence of iptables and Linux
bridges in FreeBSD, the project team configured Neutron
to utilize the Open vSwitch firewall driver. This approach
effectively bypassed the need for iptables and additional
Linux bridges. Open vSwitch, with its firewall driver, facil-
itates traffic filtering by installing flow rules directly onto
the switch. These flow rules are designed to emulate the

security group functionalities, providing a means to manage
and secure network traffic within the OpenStack environment.
This workaround leverages Open vSwitch’s capabilities to
achieve similar objectives as security groups in a way that
aligns with FreeBSD’s network architecture, sidestepping the
need to integrate ipfw or pf into Neutron.

ovs

integration bridge

flow rules
vm tap

vm tap
veth

veth

Fig. 3. The security group implementation (Open vSwitch flow rules)

The optimal solution for OpenStack’s security group func-
tionality in FreeBSD is the development of a native pf (Packet
Filter) firewall driver within Neutron. This integration would
enable robust and efficient security group management, lever-
aging FreeBSD’s advanced firewall capabilities. The imple-
mentation would require adapting Neutron to work seamlessly
with pf, ensuring effective translation and enforcement of
security rules. This approach aims to bring FreeBSD-based
OpenStack deployments to parity with Linux-based systems
in terms of network security and efficiency.

C. Privilege Model

In integrating OpenStack with FreeBSD, a significant chal-
lenge arose in the realm of privilege separation. OpenStack
primarily targets Linux environments and thus relies on Linux-
specific capabilities for managing different privilege levels
within its components. This mechanism is crucial for main-
taining security and efficiency, particularly in components like
Nova and Neutron. FreeBSD, however, employs a distinct
capability and security model, which created a compatibility
issue. Adapting OpenStack’s privilege separation, which heav-
ily utilizes the Linux-centric oslo.privsep library, to FreeBSD’s
different security architecture was a complex task.

As an immediate workaround, the project considered utiliz-
ing the oslo.rootwrap utility, a component of the oslo.privsep
library. This utility allows certain operations to run as root,
but with strict command filters to maintain security. However,
this approach was more of a stop-gap measure. It provided a
way to run necessary privileged operations but lacked the finer
control and security assurances of a true privilege separation
mechanism tailored for FreeBSD.

The ideal solution would involve developing or adapting a
privilege separation mechanism that aligns with FreeBSD’s se-
curity model while meeting OpenStack’s operational require-
ments. This could mean creating a FreeBSD-specific version of
the oslo.privsep library or a similar framework that can handle
privilege elevation and reduction in a manner compatible with



FreeBSD’s capabilities. Such a solution would ensure that
OpenStack components on FreeBSD maintain high security
standards, offer precise control over privileges, and integrate
seamlessly with FreeBSD’s inherent security features. This
approach would require a thorough understanding of both
OpenStack’s security needs and FreeBSD’s capability system,
alongside extensive testing to ensure robustness and reliability.

D. Miscellaneous

1) Nested Virtualization: The nested virtualization chal-
lenge in the OpenStack FreeBSD integration project was
encountered during the development phase. The development
environment was set up on a virtualized layer, with OpenStack
components running on a series of Linux KVM-based VMs,
referred to as host VMs. The challenge surfaced when porting
the nova-compute service to support bhyve, FreeBSD’s hyper-
visor. Attempts to boot a bhyve-based guest VM within these
host VMs led to failures, where not only did the guest VM fail
to start, but it also caused the host VM to hang. This issue
was a significant obstacle, as nested virtualization—running
a hypervisor inside a VM—is crucial for development and
testing purposes, especially when resources are limited.

Upon investigation, the root cause of the problem was
identified as a hardware-related issue, specifically linked to the
APIC emulation of the VT-x features: VID and PostIntr.
This discovery was corroborated by information found online
from others who had encountered similar issues [6]. The
resolution involved turning off these two CPU features (VID
and PostIntr) for the host VMs. Once these features
were disabled, the issue with the bhyve-based guest VMs
no longer occurred, allowing them to boot up successfully
without causing the host VMs to hang. This fix was crucial
in enabling the continuation of the development and testing of
nova-compute and bhyve integration in a nested virtualization
environment. Additionally, this resolution made it easier for
others interested in the project to get started and replicate
the development environment. The use of VMs, being more
lightweight and accessible than bare-metal servers, greatly
facilitated broader participation and experimentation in the
project, enhancing the collaborative development process.

2) VM Consoles: The VM console challenge in the
FreeBSD-based OpenStack environment was multifaceted,
originating from the workaround implemented for IP address
issuance. When the internal DHCP functionality in Neutron
was disabled in favor of an external DHCP server, VMs began
receiving IP addresses different from those allocated by Neu-
tron. This divergence caused a critical network connectivity
issue: the outgoing traffic from VMs didn’t match the flow
rules set on Open vSwitch, leading to packet drops.

Addressing this issue required a method to manually update
the IP addresses within the VMs to those allocated by Neutron.
However, due to the connectivity problems, traditional remote
management tools like SSH were not an option. The solution
lay in accessing the VMs’ consoles, but this presented its own
set of challenges.

bhyve does support exposing VNC consoles for VM access,
but with a caveat: the VMs need to boot in UEFI mode, as
the graphics depend on the UEFI framebuffer. Implementing
UEFI booting with libvirt and bhyve is a complicated process
and was not a viable option within the project’s timeline,
even though it is a planned future enhancement. This led to
exploring alternative methods of console access.

The project turned to nova-serialproxy, a component that
allows proxying of VM’s serial consoles. By employing
nmdm(4) (nullmodem terminal driver) with each VM during
instance creation, the VMs’ serial consoles could be accessed
using the cu(1) command. However, this approach had its
limitations, as the nmdm(4) device is only available on the
compute host where the VM is running, necessitating direct
access to these hosts. This requirement posed practical and
security challenges, as it complicated the process for users
who needed to access VM consoles remotely.

As a result, we developed a simple proxy: socat-manager
[4]. This proxy tool effectively exposes the nmdm(4) devices
over network sockets, enabling nova-serialproxy to remotely
access them. As a result, users can now connect to the VM’s
serial console from anywhere via the Nova API with a valid
authentication token. This enhancement not only overcomes
the limitation of requiring access to the compute host but
also enables users to modify the VM’s IP address directly
through the console. This capability is crucial for resolving the
network connectivity issues caused by the mismatch between
the IP addresses designated by Neutron and those assigned by
the external DHCP server. The ability to update the VMs’ IP
configurations remotely restores their network functionality,
significantly improving the operability and flexibility of the
FreeBSD-based OpenStack environment.

client

nova-api

nova-serialproxy

compute host

bhyve

vm
nmdmXA

nmdmXB
socat

manager

port

Fig. 4. Exposing VM console with socat-manager

While developing socat-manager as part of the workaround
for VM console access in FreeBSD-based OpenStack, the team
encountered a notable issue related to libvirt’s event hooks
for bhyve. Specifically, the implementation of these hooks
was incomplete, which meant that essential VM information,
such as the names of nmdm(4) devices and designated serial
port numbers, were not readily available through STDIN. This



limitation required the team to parse the domain XML file to
extract this necessary information, adding complexity to the
implementation of socat-manager.

This issue was significant enough to be reported to the
libvirt upstream, where it was subsequently addressed and
fixed [7]. With this fix in place, there’s potential to update
and refine the socat-manager implementation to directly utilize
the now-available VM information provided by libvirt’s event
hooks.

In light of this development and looking forward, the ideal
solution for VM console access in FreeBSD-based OpenStack
encompasses two primary advancements:

• Handling UEFI Booting with libvirt and bhyve for
OpenStack Nova: Perfecting UEFI booting within the
libvirt and bhyve framework for OpenStack Nova. This
will enable users to access VM consoles via VNC, pro-
viding an integrated and user-friendly graphical console
interface.

• Direct Exposure of VM Serial Consoles in bhyve:
Modifying bhyve to support direct exposure of VM serial
consoles via network ports. This will allow the native
use of OpenStack’s nova-serialproxy for accessing VM
serial consoles, thereby eliminating the need for the socat-
manager solution.

These developments aim to address the VM console access
challenges comprehensively, offering a seamless and secure
management experience for VMs in FreeBSD-based Open-
Stack deployments.

V. FUTURE WORKS

The future direction of this project is focused on several key
areas of development and improvement, aiming to enhance the
integration of OpenStack with FreeBSD.

A. Development of Native Drivers for Neutron and Nova

A primary objective is to develop native drivers for Neutron
and Nova that are optimized for FreeBSD. This involves
creating drivers that can fully leverage FreeBSD’s unique
features and capabilities, particularly in networking and vir-
tualization. These native drivers will be crucial in improving
the performance, stability, and functionality of OpenStack
components within FreeBSD environments.

B. Porting Additional OpenStack Components to FreeBSD

The scope of integration will be expanded to include more
OpenStack components and services. By porting additional
components to FreeBSD, we plan to enhance the overall
functionality and robustness of the integrated system. This ex-
pansion will not only bring a wider range of cloud capabilities
to FreeBSD but also ensure that the platform can cater to a
broader array of cloud computing requirements.

C. Migration to New Versions of OpenStack

Keeping up with the evolving OpenStack releases, the
project will aim to migrate to newer versions of OpenStack
as they become available. This migration is essential for

maintaining compatibility with the latest features and improve-
ments in the cloud ecosystem. It will involve updating the
existing FreeBSD integrations to work seamlessly with the
latest OpenStack releases.

D. Creating Corresponding FreeBSD Ports

A significant part of the future work will involve creating
corresponding FreeBSD ports for the newly integrated Open-
Stack components and their dependencies. This will make
the installation and management of these components more
accessible and straightforward for FreeBSD users. Creating
these ports is a step towards ensuring that the OpenStack
integration is not just functional but also user-friendly and
widely adoptable.

E. Continuous Engagement and Knowledge Sharing

Continuing from the current efforts, we intend to engage
more actively with both the FreeBSD and OpenStack commu-
nities. This collaboration will be instrumental in addressing
complex challenges and driving innovation in cloud com-
puting. Sharing findings, methodologies, and tools with the
broader community is also a key part of this engagement,
contributing significantly to the collective knowledge base and
assisting others interested in similar integration efforts.

F. Performance and Scalability Improvements

Enhancing the performance and scalability of the system
remains a core focus. Future developments will ensure that the
FreeBSD-integrated OpenStack system can efficiently handle
large-scale cloud deployments, making it a viable option for
a wide range of cloud computing applications.

Through these focused efforts, the project aims to solidify
FreeBSD’s position as a robust and versatile platform for
OpenStack deployments, catering to the evolving needs of
cloud computing environments.

VI. CONCLUSION

The integration of OpenStack with FreeBSD represents a
significant step forward in expanding the capabilities and
applicability of both platforms. While this project presents nu-
merous challenges, the progress made so far is promising. The
successful development of a Proof of Concept demonstrates
the feasibility of this integration, and the outlined challenges
and proposed solutions provide a clear path forward.

By continuing to develop and refine this integration, we
aim to create a robust, efficient, and versatile cloud computing
platform that leverages the unique strengths of FreeBSD. We
call upon the FreeBSD and OpenStack communities to col-
laborate with us in this endeavor, contributing their expertise
and insights to overcome the challenges and realize the full
potential of this integration.

ACKNOWLEDGMENT

We express our gratitude to the FreeBSD Foundation for
their generous sponsorship and vital support, essential in
advancing our project. We also extend our appreciation to



the OpenStack community for their valuable contributions and
collaborative spirit.

Special thanks to the CHERI team at the University of
Cambridge for their constructive feedback and meaningful
contributions, significantly enriching our work.

We acknowledge the team at FreeBSD.org for their collab-
oration and valuable input.

On a personal note, heartfelt thanks are extended to my
spouse, Jung-Wei, for their unwavering support and encour-
agement throughout this endeavor.

Lastly, we are thankful to all individual contributors from
the FreeBSD and OpenStack communities for their dedication
and expertise.

REFERENCES

[1] “OpenStack Xena Installation Guides,” https://docs.openstack.org/xena/
install/

[2] “Neutron/ML2 - OpenStack,” https://wiki.openstack.org/wiki/Neutron/
ML2

[3] “openstack-on-freebsd/docs: Repo for OpenStack on FreeBSD project,
including steps, methods, and source codes,” https://github.com/
openstack-on-freebsd/docs

[4] “openstack-on-freebsd/socat-manager: A proxy for exposing consoles of
bhyve VMs to nova-compute,” https://github.com/openstack-on-freebsd/
socat-manager

[5] “Open vSwitch on Linux, FreeBSD and NetBSD — Open
vSwitch 3.2.90 documentation,” https://docs.openvswitch.org/en/latest/
intro/install/general/

[6] “246168 - Ubuntu 20.04 KVM / QEMU Failure with nested FreeBSD
bhyve” https://bugs.freebsd.org/bugzilla/show bug.cgi?id=246168

[7] “No domain XML passed as stdin for bhyve hooks (#528) · Issues ·
libvirt / libvirt · GitLab,” https://gitlab.com/libvirt/libvirt/-/issues/528


