Towards a Robust FreeBSD-Based Cloud: Porting OpenStack Components

Chih-Hsin Chang @ AsiaBSDCon 2024
Outlines

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion
Outlines

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion
Who Am I

- Chih-Hsin (Zespre) Chang
- Software developer @ SUSE
- Harvester HCI open source project
Project Origin

- CHERI (Capability Hardware Enhanced RISC Instructions)
 - Managing a set of Morello evaluation boards with OpenStack Ironic

- The OpenStack on FreeBSD Project
 - Started in Jan. 2022
 - Chih-Hsin Chang & Li-Wen Hsu (lwhsu)
 - Initially targeting OpenStack Ironic
 - Pivot to VM-first
Outlines

- Introduction
- Background
 - Keystone
 - Glance & Placement
 - Neutron
 - Nova
- Current Status
- Challenges
- Roadmap
- Conclusion
Open What?

- A cloud infrastructure for virtual machines, bare metal, and containers
- Consist of a stack of open-source software components to provide services
 - Compute
 - Networking
 - Storage
 - Orchestration
 - Application lifecycle
 - Telemetry
 - ...
- Latest release: 2023.02 Bobcat
Keystone (Identity Service and Service Catalog)

- API client authn and authz
- Support LDAP server as backend
- Service discovery
Glance (Image Service) & Placement (Inventory Service)

- Serve VM images and their metadata
- Track cloud resource inventory and usage
- Help other services, e.g. Nova, do the decision about resource allocation
Neutron (Networking Service)

- **API server**
 - Accept HTTP-based requests from other components

- **Various agents**
 - L2: L2 network connectivity to OpenStack resources
 - L3: virtual routers and floating IPs
 - DHCP: IP address issuance
 - Metadata: cloud-init metadata and user data

- **ML2 (Modular Layer 2) plug-ins**
 - Type drivers: flat, Geneve, GRE, VLAN, and VXLAN
 - Mechanism drivers: Open vSwitch, Linux bridge, OVN, SRIOV, MacVTap, and L2 population
Nova (Compute Service)

- **API server**
 - Accept HTTP-based requests from other components

- **Scheduler**
 - Collect resource usage from compute nodes
 - Decide what node to run the instance

- **Conductor**
 - Prepare instance information based on DB entries

- **Compute**
 - Manage instance lifecycle through hypervisor on each compute node
 - Hypervisor manager

- **Serial proxy**
 - Provide access to instance console over WebSocket
Ironic (Bare-metal Provisioning Service)

- Manages bare-metals in contrast to typical Nova usage
- Deployment models
 - Stand-alone mode
 - Keystone + Ironic
 - As a Nova virt driver
Outlines

- Introduction
- Background
- Project Status
 - Development Environment
 - OpenStack Xena Integration
 - Porting OpenStack Components
 - Demo
- Challenges
- Roadmap
- Conclusion
Development Environment

- In-house development environment
 - Processors: 2 x Intel® Xeon® E5-2680 v4
 - Motherboard: Supermicro® X10DRL-i
 - Memory: 64 GB RAM
 - Storage: 1 TB SSD

- Remote PoC site: openstack1
- Single-node, all-in-one cluster
So, what does it look like now?

- Install from source
- Each component runs in its own Python virtual environment

- Keystone
 - Source code: unmodified
- Glance
 - Source code: unmodified
- Placement
 - Source code: unmodified
- Neutron
 - Source code: patches
 - Configuration: flat network + Open vSwitch
- Nova
 - Source code: patches
 - Configuration: libvirt + bhyve

➢ Limitations
 - No tenant network isolation
 - Need external DHCP service
 - No floating IPs
(Live?) Demo

The demo video, just in case something bad happens
https://asciinema.org/a/647308
OpenStack Xena Integration

- The “OpenStack on FreeBSD” GitHub organization
 - https://github.com/openstack-openstack
 - Steps by step build and installation guide
 - [openstack-on-freebsd/docs](https://github.com/openstack-openstack/openstack-on-freebsd/docs)
 - Administration (issue management)
 - [openstack-on-freebsd/admin](https://github.com/openstack-openstack/openstack-on-freebsd/admin)
 - Ported source code
 - (forked) [openstack-on-freebsd/neutron](https://github.com/openstack-on-freebsd/neutron)
 - (forked) [openstack-on-freebsd/nova](https://github.com/openstack-on-freebsd/nova)
 - FreeBSD ports collection
 - [openstack-on-freebsd/openstack](https://github.com/openstack-on-freebsd/openstack)
 - Custom solutions
 - [openstack-on-freebsd/socat-manager](https://github.com/openstack-on-freebsd/socat-manager)
 - (forked) [openstack-on-freebsd/novaconsole](https://github.com/openstack-on-freebsd/novaconsole)
Outlines

- Introduction
- Background
- Current Status
- Challenges
 - Computing
 - Networking
 - Privilege Model
 - Miscellaneous
- Roadmap
- Conclusion
Challenge - Computing

- Nova abstracts the operations against the underlying hypervisors
- Nova virtualization driver
 - Well-defined interfaces
 - Per-compute node configuration
- Currently supported drivers
 - libvirt.LibvirtDriver
 - fake.FakeDriver
 - ironic.IronicDriver
 - vmwareapi.VMwareVCDriver
 - zvm.ZVMDriver
Using the libvirt Driver on FreeBSD

- **libvirt**
 - Only implement a limited set of functionalities for FreeBSD/bhyve

- **libvirt virt driver**
 - Some operations specific to bhyve not covered by libvirt
 - Require a new virtualization type - bhyve
Challenge - Networking

- The combination of ML2 drivers for FreeBSD
 - Type driver: flat
 - Mechanism driver: openvswitch

- L2 agent
 - No Linux bridge available
 - No iptables available

- L3 agent - virtual routers
 - No iptables

- DHCP agent
 - No Linux network namespace
 - No Linux veth pairs
Open vSwitch on FreeBSD

- Open vSwitch `datapath_type=netdev`, without DPDK
 - No openvswitch kernel module
 - The combination is considered experimental (not tested thoroughly)
 - Performance issue

- Todos
 - Enable DPDK
 - Develop native FreeBSD bridge agent
IP Address Mismatch

- VMs get IP addresses from the external DHCP server
- Flow rules enforced by the underlying Open vSwitch
 - Source IP address does not match the one Neutron allocated
- Result: packets originated from VMs get dropped
Challenge - Privilege Management

- Principle of least privilege
 - Running with reduced/no privilege
 - Escalating when absolutely required

- All operations will be translated into commands and run on the OS, eventually
 - `chown(8)`
 - `ip(8)`
 - `ovs-vsctl(8)`
The Evolution of Privilege Mechanism in OpenStack

- **sudo**
 - One-shot
 - All or nothing

- **oslo.rootwrap**
 - Allow advanced filters
 - Support one-shot or daemon mode
 - Performance penalty
 - Does not allow long-lived/streaming commands

- **oslo.privsep**
 - Leverage Linux capabilities
 - Drop root superpowers but only keep what is required
 - Two-process model (unprivileged and privileged)
 - Connected over a local communication channel
 - Share the same fate

```
$ sudo nova-rootwrap /etc/nova/rootwrap.conf command
```
What about FreeBSD?

- Linux capabilities is not available on FreeBSD
- Workaround
 - Fallback to rootwrap
- Formal solution
 - Leverage FreeBSD’s own privilege management mechanism
Misc - Exposing VM Serial Console

- Introducing socat-manager
 - Listening on Unix socket
 - Maintaining TCP port to \texttt{nmdm(4)} mappings
 - Managing \texttt{socat(1)} processes
 $$\$/usr/local/bin/socat \$
 \texttt{file:/dev/nmdm21B,ispeed=9600,ospeed=9600,raw,echo=0} \$
 \texttt{tcp-listen:10014,bind=0.0.0.0,reuseaddr,fork}$$

- The libvirt hook script
 - Taking the domain XML as the input
 - Calling socat-manager with parameters (port and nmdm device name) as the side effect

- Ugly, but it works
On Linux hosts

On FreeBSD hosts
Outlines

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion
Roadmap

- Development of native drivers for Neutron and Nova
- Porting additional OpenStack components to FreeBSD
- Migration to new versions of OpenStack
- Creating corresponding FreeBSD ports
- Continuous engagement and knowledge sharing
- Performance and scalability improvements
Outlines

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion
Conclusion

- Use cases are very limited
 - We dropped many things to make it viable
- There are many topics/issues need expertise
 - Exploring network implementation equivalents
 - Finding suitable privilege model
- Bringing Linux-first design to FreeBSD
- Follow the Windows path (?)
- Need to formalize the changes
Thank you!

starbops@hey.com