Towards a Robust FreeBSD-Based Cloud: Porting OpenStack Components

Chih-Hsin Chang @ AsiaBSDCon 2024

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion

Who Am I

- Chih-Hsin (Zespre) Chang
- Software developer @ SUSE
- Harvester HCI open source project

Project Origin

- CHERI (Capability Hardware Enhanced RISC Instructions)
 - Managing a set of Morello evaluation boards with OpenStack Ironic
- The OpenStack on FreeBSD Project
 - Started in Jan. 2022
 - Chih-Hsin Chang & Li-Wen Hsu (lwhsu)
 - Initially targeting OpenStack Ironic
 - Pivot to VM-first

- Introduction

- Background

- Keystone
- Glance & Placement
- Neutron
- Nova
- Current Status
- Challenges
- Roadmap
- Conclusion

Open What?

- A cloud infrastructure for virtual machines, bare metal, and containers
- Consist of a stack of open-source software components to provide services
 - Compute
 - Networking
 - Storage
 - Orchestration
 - Application lifecycle
 - Telemetry
 - ...
- Latest release: 2023.02 Bobcat

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Keystone (Identity Service and Service Catalog)

- API client authn and authz
- Support LDAP server as backend
- Service discovery

Glance (Image Service) & Placement (Inventory Service)

- Serve VM images and their metadata

- Track cloud resource inventory and usage
- Help other services, e.g. Nova, do the decision about resource allocation

Neutron (Networking Service)

- API server
 - Accept HTTP-based requests from other components
- Various agents
 - L2: L2 network connectivity to OpenStack resources
 - L3: virtual routers and floating IPs
 - DHCP: IP address issuance
 - Metadata: cloud-init metadata and user data

- ML2 (Modular Layer 2) plug-ins
 - Type drivers: flat, Geneve, GRE, VLAN, and VXLAN
 - Mechanism drivers: Open vSwitch, Linux bridge, OVN, SRIOV, MacVTap, and L2 population

Nova (Compute Service)

- API server
 - Accept HTTP-based requests from other components
- Scheduler
 - Collect resource usage from compute nodes
 - Decide what node to run the instance
- Conductor
 - Prepare instance information based on DB entries
- Compute
 - Manage instance lifecycle through hypervisor on each compute node
 - Hypervisor manager
- Serial proxy
 - Provide access to instance console over WebSocket

Ironic (Bare-metal Provisioning Service)

- Manages bare-metals in contrast to typical Nova usage
- Deployment models
 - Stand-alone mode
 - Keystone + Ironic
 - As a Nova virt driver

- Introduction
- Background
- Project Status
 - Development Environment
 - OpenStack Xena Integration
 - Porting OpenStack Components
 - Demo
- Challenges
- Roadmap
- Conclusion

Development Environment

- In-house development environment
 - Processors: 2 x Intel® Xeon® E5-2680 v4
 - Motherboard: Supermicro® X10DRL-i
 - Memory: 64 GB RAM
 - Storage: 1 TB SSD
- Remote PoC site: openstack1
- Single-node, all-in-one cluster

So, what does it look like now?

- Install from source
- Each component runs in its own Python virtual environment
- Keystone
 - Source code: unmodified
- Glance
 - Source code: unmodified
- Placement
 - Source code: unmodified
- Neutron
 - Source code: patches
 - Configuration: flat network + Open vSwitch
- Nova
 - Source code: patches
 - Configuration: libvirt + bhyve
- > Limitations
 - No tenant network isolation
 - Need external DHCP service
 - No floating IPs

(Live?) Demo

OpenStack Xena Integration

- The "OpenStack on FreeBSD" GitHub organization
 - <u>https://github.com/openstack-openstack</u>
 - Steps by step build and installation guide
 - openstack-on-freebsd/docs
 - Administration (issue management)
 - openstack-on-freebsd/admin
 - Ported source code
 - (forked) openstack-on-freebsd/neutron
 - (forked) openstack-on-freebsd/nova
 - FreeBSD ports collection
 - openstack-on-freebsd/openstack
 - Custom solutions
 - openstack-on-freebsd/socat-manager
 - (forked) openstack-on-freebsd/novaconsole

- Introduction
- Background
- Current Status
- Challenges
 - Computing
 - Networking
 - Privilege Model
 - Miscellaneous
- Roadmap
- Conclusion

Challenge - Computing

- Nova abstracts the operations against the underlying hypervisors
- Nova virtualization driver
 - Well-defined interfaces
 - Per-compute node configuration
- Currently supported drivers
 - libvirt.LibvirtDriver
 - fake.FakeDriver
 - ironic.IronicDriver
 - vmwareapi.VMwareVCDriver
 - zvm.ZVMDriver

Using the libvirt Driver on FreeBSD

- libvirt
 - Only implement a limited set of functionalities for FreeBSD/bhyve
- libvirt virt driver
 - Some operations specific to bhyve not covered by libvirt
 - Require a new virtualization type bhyve

Challenge - Networking

- The combination of ML2 drivers for FreeBSD
 - Type driver: flat
 - Mechanism driver: openvswitch
- L2 agent
 - No Linux bridge available
 - No iptables available
- L3 agent virtual routers
 - No iptables
- DHCP agent
 - No Linux network namespace
 - No Linux veth pairs

VLAN + Open vSwitch (Linux host)

Flat + Open vSwitch (FreeBSD host)

Open vSwitch on FreeBSD

- Open vSwitch **datapath_type=netdev**, without DPDK
 - No openvswitch kernel module
 - The combination is considered experimental (not tested thoroughly)
 - Performance issue
- Todos
 - Enable DPDK
 - Develop native FreeBSD bridge agent

IP Address Mismatch

- VMs get IP addresses from the external DHCP server
- Flow rules enforced by the underlying Open vSwitch
 - Source IP address does not match the one Neutron allocated
- Result: packets originated from VMs get dropped

Challenge - Privilege Management

- Principle of least privilege
 - Running with reduced/no privilege
 - Escalating when absolutely required
- All operations will be translated into commands and run on the OS, eventually
 - chown(8)
 - ip(8)
 - ovs-vsctl(8)

The Evolution of Privilege Mechanism in OpenStack

\$ sudo command

- sudo
 - One-shot
 - All or nothing
- oslo.rootwrap
 - Allow advanced filters
 - Support one-shot or daemon mode
 - Performance penalty
 - Does not allow long-lived/streaming commands
- oslo.privsep
 - Leverage Linux capabilities
 - Drop root superpowers but only keep what is required
 - Two-process model (unprivileged and privileged)
 - Connected over a local communication channel
 - Share the same fate

privilege separation framework

\$ sudo nova-rootwrap /etc/nova/rootwrap.conf command

What about FreeBSD?

- Linux capabilities is not available on FreeBSD
- Workaround
 - Fallback to rootwrap
- Formal solution
 - Leverage FreeBSD's own privilege management mechanism

Misc - Exposing VM Serial Console

- Introducing socat-manager
 - Listening on Unix socket
 - Maintaining TCP port to **nmdm(4)** mappings
 - Managing **socat(1)** processes
 - \$ /usr/local/bin/socat \

file:/dev/nmdm21B,ispeed=9600,ospeed=9600,raw,echo=0 \

tcp-listen:10014,bind=0.0.0.0,reuseaddr,fork

- The libvirt hook script
 - Taking the domain XML as the input
 - Calling socat-manager with parameters (port and nmdm device name) as the side effect
- Ugly, but it works

On Linux hosts

On FreeBSD hosts

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion

Roadmap

- Development of native drivers for Neutron and Nova
- Porting additional OpenStack components to FreeBSD
- Migration to new versions of OpenStack
- Creating corresponding FreeBSD ports
- Continuous engagement and knowledge sharing
- Performance and scalability improvements

- Introduction
- Background
- Current Status
- Challenges
- Roadmap
- Conclusion

Conclusion

- Use cases are very limited
 - We dropped many things to make it viable
- There are many topics/issues need expertise
 - Exploring network implementation equivalents
 - Finding suitable privilege model
- Bringing Linux-first design to FreeBSD
- Follow the Windows path (?)
- Need to formalize the changes

Thank you!

starbops@hey.com