
LLDB FreeBSD Kernel Module Improvement
1st Sheng-Yi Hung

Computer Science and Information Engineering
National Taiwan Normal University

Taipei, Taiwan
aokblast@FreeBSD.org

Abstract—This paper introduces the low level debugger
(LLDB) kernel module debug facility for the FreeBSD kernel. The
current functional status of LLDB within the FreeBSD kernel is
attributed to contributions from [1] and the collaborative efforts
of the community. Key functionalities include core dump parsing
and memory context building for the coredump, specifically
integrated into the process plugin within LLDB for the FreeBSD
kernel. This enhancement equips LLDB for effective post-mortem
debugging on the FreeBSD kernel. While the implementation of
the process plugin has been successfully completed, the paper
emphasizes the imperative need to implement the Dynami-
cLoader plugin for the kernel loader. This plugin plays a critical
role in loading the symbol file of the kernel module, ensuring
comprehensive parsing of symbols for loadable kernel modules.
Additionally, given the potential existence of the kernel module
as either a relocatable file (for x86) or a shared object (for ARM),
the implementation should confirms the usability of both types
of ELF format kernel modules.

Index Terms—LLDB, Kernel Module, FreeBSD.

I. INTRODUCTION

The landscape of kernel-level debugging in the FreeBSD op-
erating system has witnessed notable improvement, primarily
through the introduction of the LLDB kernel module debug
facility. The current functional capabilities of LLDB within
the FreeBSD kernel owe their existence to the contributions
detailed in [1] and the collaborative efforts of the community.
Noteworthy functionalities encompass register and core dump
parsing, coupled with memory context building tailored for
coredumps. These capabilities have been great implemented
in the process plugin within LLDB, offering an enhanced
framework for post-mortem debugging on the FreeBSD kernel.

While the implementation of the process plugin repre-
sents a significant stride forward, this paper underscores the
imperative necessity to extend LLDB’s capabilities further
by implementing the DynamicLoader plugin tailored for the
kernel loader. The DynamicLoader plugin assumes a pivotal
role in loading the symbol file of the kernel module, thereby
ensuring a comprehensive parsing of symbols for loadable
kernel modules. Given the diverse nature of kernel modules,
which may manifest either as relocatable files (for x86)
or shared objects (for ARM), the implementation strives to
confirm the adaptability of LLDB to both types of ELF format
kernel modules. The shared object has been well implemented
as it is the common format for libraries in userspace. In the
relocatable file format, there are some work needs to be done
in the ObjectFile. This critical extension is poised to augment

LLDB’s functionality, providing a more robust and versatile
debugging environment for the FreeBSD kernel.

The outcomes of this paper’s work have been merged into
the LLVM codebase and can be found in the following pull
request: https://github.com/llvm/llvm-project/pull/67106.

The following sections contains the background of this
paper, the implementation of this paper, and some works has
not been done when the paper is written.

II. BACKGROUND

A. Toolchain and Debugger

The toolchain serves as the foundational element for oper-
ating system (OS) development, acting as the essential frame-
work that developers employ to build both the OS userspace
and its kernel. An integral facet of this toolchain is the
debugger, which enhances developers’ capabilities, providing
a refined experience for the analysis of program behavior.

In the FreeBSD operating system, there are currently two
officially supported debuggers: GDB for the kernel (KGDB)
[2] and LLDB [3]. Originally the debugger of choice for both
FreeBSD userland and kernel space, KGDB delivers com-
prehensive functionality, allowing developers to seamlessly
debug kernel coredumps within user space. The introduction
of LLDB to FreeBSD coincided with a pivotal transition in
the binding toolchain, shifting from GNU to LLVM. Conse-
quently, this transition required the re-implementation of all
infrastructure previously established in the GNU toolchain,
now residing within the LLVM codebase. This integration
has proven successful, extending across both FreeBSD kernel
space and userspace.

However, despite these contributions, a challenge persists
within the kernel space: LLDB has no ability on parsing
symbols for loadable kernel modules [4]. This paper addresses
this issue by proposing and implementing the dynamicloader
plugin in LLDB, aiming to enhance its capability to accurately
parse symbols of loadable kernel modules.

B. Kernel Module Loading in LLDB: A Comparison with
Userspace Shared Libraries

The analogy between kernel modules and shared libraries
in userspace is underscored by the shared characteristic of
dynamic loading. In userspace, a shared library is loaded
using system calls like mmap, facilitated by a dynamic loader.
The independence from the kernel allows for the existence of
multiple implementations, such as ld.ldd [5] and gold.

Fig. 1. Structure of linker files

In contrast, within the kernel space, dynamic loading is
managed by the kernel itself, specifically through the kld [4]
subsystem in FreeBSD. The kld subsystem is tasked with
critical responsibilities, including the mapping of the kernel
modules’ memory image into the kernel’s address space.
Additionally, it oversees the registration and initialization of
kernel modules within the kernel framework.

Consequently, the process of loading a kernel module in
LLDB for the FreeBSD kernel closely aligns with the imple-
mentation of a dynamic loader plugin tailored for the FreeBSD
kernel. This parallel underscores the conceptual symmetry
between userspace and kernel space in the context of dynamic
loading.

Moreover, recognizing the inherent similarities between
userspace and kernel space, certain functionalities established
in userspace, such as ELF parsing, can be seamlessly re-
purposed for application in the kernel space with minimal
modification. This cross-applicability not only streamlines de-
velopment efforts but also emphasizes the potential for shared
techniques in enhancing the functionality of LLDB within the
context of FreeBSD kernel module analysis.

C. The current infrastructure in LLDB

In prior efforts, the community developed a plugin named
”ProcessFreeBSDKernel” designed to parse kernel coredumps
and extract memory information from them. This plugin
employs either libfbsdvmcore [6] for cross-platform debug-
ging or libkvm [7] for debugging the kernel within the
FreeBSD environment. Through the utilization of this plugin,
the community gains the capability to conduct post-mortem
debugging, facilitating a basic analysis of kernel-related bug.
However, the lack of dynamic loader plugin for the kernel
still makes a stunt on symbol parsing, making LLDB cannot
replace KGDB as a primary tool for kernel debugging.

III. DYNAMICLOADERFREEBSDKERNEL

This section delves into the intricate details of our module’s
implementation, containing the design, implementation, mod-
ifications to the ELF file parsing in the original LLDB, and
the integration into the FreeBSD source code.

A. Design

In the present study, we introduce a novel LLDB plugin
named ”DynamicLoaderFreeBSDKernel.” The primary objec-
tive of this plugin is to facilitate the integration of LLDB with
the FreeBSD kernel module. The plugin undertakes a series
of essential steps to enable LLDB support for the FreeBSD
kernel. These steps are delineated as follows:

1) Initialization by ProcessFreeBSDKernel: The plugin is
loaded by the ProcessFreeBSDKernel when the des-
ignated target is identified as a kernel image or a
coredump.

2) Find and Verification of Kernel Memory Address: The
plugin acquires and verifies the memory address of the
kernel within the coredump, recognizing the potential
variability in coredump structures that may not strictly
adhere to the characteristics of a kernel coredump.

3) Parsing of Kernel-Loaded Module Addresses: A parsing
operation is performed on the linked list within the
kernel, which encapsulates the loading addresses and
name of all loaded kernel modules.

4) Relocatable File Handling: For each file encountered
during parsing, the plugin distinguishes whether it is a
relocatable file. In the case of relocatable files, the load-
ing address is established, and the process is concluded.

5) Adjustment of In-Memory Section Addresses: For files
that are not relocatable, the plugin iteratively adjusts the
addresses of all in-memory sections before concluding
the processing and returning the relevant results.

By implementing these steps, the DynamicLoaderFreeBS-
DKernel plugin serves as a pivotal component in extending
LLDB’s capabilities to seamlessly interact with and support
the FreeBSD kernel module.

B. Plugin Implementation

// DynamicLoaderFreeBSDKernel.cpp

+while (current_kld != 0) {
+ addr_t kld_filename_addr =
+ m_process->ReadPointerFromMemory(

current_kld + kld_off_filename, error);
+ addr_t kld_pathname_addr =
+ m_process->ReadPointerFromMemory(

current_kld + kld_off_pathname, error);
+
+ m_process->ReadCStringFromMemory(

kld_filename_addr, kld_filename,
+ sizeof(

kld_filename), error);
+ m_process->ReadCStringFromMemory(

kld_pathname_addr, kld_pathname,
+ sizeof(

kld_pathname), error);
+ kld_load_addr =
+ m_process->ReadPointerFromMemory(

current_kld + kld_off_address, error);
+
+ kmods_list.emplace_back();
+ KModImageInfo &kmod_info = kmods_list.back();
+ kmod_info.SetName(kld_filename);
+ kmod_info.SetLoadAddress(kld_load_addr);
+ kmod_info.SetPath(kld_pathname);
+

+ current_kld =
+ m_process->ReadPointerFromMemory(

current_kld + kld_off_next, error);
+ if (kmod_info.GetName() == "kernel")
+ kmods_list.pop_back();
+ if (error.Fail())
+ return false;
+ }

Listing 1. Main loop for the module parsing

Within this subsection, the focus is on locating and validat-
ing the loaded address of the kernel and kernel module. The
current methodology involves reading the loaded address from
the kernel’s ELF file, a viable approach given the absence of
kASLR in the FreeBSD kernel. The kernel loading address
is considered as the virtual address of the first segment in the
ELF file. Through alignment with KGDB and subsequent con-
firmation, this address is corroborated. Memory information
within the loaded address is extracted from a coredump using
the previously discussed ”ProcessFreeBSDKernel” plugin, ver-
ifying the OS type and ELF header format. With the validated
loading address, symbol information within the kernel can be
parsed.

Subsequent to confirming the kernel’s loaded address, the
next imperative is to ascertain the loaded kernel module names
and their respective addresses. This information is graped from
the kernel by parsing the ”linker files” variable, depicted in
Figure 1. This variable constitutes a linked list exposed by
the kernel, documenting structures that record the names and
addresses of currently loaded kernel modules. The parsing
process, facilitated by the ”ProcessFreeBSDKernel” plugin,
involves iterating through this linked list. In fig 1 we show
the loop for the algorithm. First, we get the address of
member from the offset by ”ReadPointerFromMemory”. Then
we get the content of member by ”ReadCStringFromMemory”.
We continue by read the address of the next structure until
the end. For each kernel module, the associated object file
is located in the system path using the provided name in
”linker files.” Simultaneously, the symbol file is attached to
the kernel module object file. Notably, kernel modules may
exist in two forms: relocatable files for x86 and shared libraries
for aarch64. For relocatable files, which is without segments,
we just set the loaded address. Conversely, for shared objects,
the addresses of each segment are aligned with those of the
kernel. Then we add the symbolized module in the module list
in LLDB. Consequently, the kernel module is comprehensively
configured, with precisely identified symbols and structures
amenable to LLDB.
C. Modification of ELF Parsing Plugin in original LLDB

// ObjectFileELF.cpp

- if (ObjectType == ObjectFile::Type::
eTypeObjectFile && Segments.empty() && (H.
sh_flags & SHF_ALLOC)) {

+ // When this is a debug file for relocatable
file, the address is all zero

+ // and thus needs to use accumulative method
+ if ((ObjectType == ObjectFile::Type::

eTypeObjectFile ||

+ (ObjectType == ObjectFile::Type::
eTypeDebugInfo && H.sh_addr == 0)) &&

+ Segments.empty() && (H.sh_flags & SHF_ALLOC)
) {

Listing 2. Modification of symbol file for relocatable file

During the implementation of this plugin, a challenge
emerged wherein the kernel module’s address was inaccurately
recorded in LLDB. Subsequent experimentation revealed that
the issue lay in the symbol file attached to the kernel module.
Specifically, the section address of the relocatable file was
consistently recorded as zero. In the original LLDB implemen-
tation, a prefix sum of offsets in the section was employed,
neglecting consideration for the symbol file in relocatable files.
In our modification, depicted in Listing 2, we account for the
symbol file with a zero section address as relocatable file,
necessitating an accumulative method.

// ObjectFileELF.cpp

+ if (GetType() == ObjectFile::eTypeObjectFile) {
+ for (SectionHeaderCollIter I = std::next(

m_section_headers.begin());
+ I != m_section_headers.end(); ++I) {
+ const ELFSectionHeaderInfo &header = *I;
+ if (header.sh_flags & SHF_ALLOC)
+ return Address(GetSectionList()->

FindSectionByID(SectionIndex(I)), 0);
+ }
+ return LLDB_INVALID_ADDRESS;
+ }

Listing 3. Add base addr for relocatable file

Another critical modification involves the base address,
employed as the preferred loaded address for ELF files in
LLDB. While this information is readily available for shared
objects and executables, relocatable kernel modules lack a
specified base address because normal relocatable file cannot
be loaded. However, given the adjustments made to the load
address in the kernel module, we ascertain a safe base address
for relocatable kernel modules. As illustrated in Listing 3,
we iteratively search for sections in the file containing the
PT ALLOC flag, designating the first section with this flag as
the loaded address.

// ObjectFileELF.cpp

case llvm::ELF::ET_EXEC:
- // 2 - Executable file
- // TODO: is there any way to detect that an

executable is a kernel
- // related executable by inspecting the program

headers, section headers,
- // symbols, or any other flag bits???
- return eStrataUser;
+ {
+ SectionList *section_list = GetSectionList();
+ if (section_list) {
+ static ConstString loader_section_name(".

interp");
+ SectionSP loader_section =
+ section_list->FindSectionByName(

loader_section_name);
+ if (loader_section) {
+ char buffer[256];
+ size_t read_size =

+ ReadSectionData(loader_section.get(),
0, buffer, sizeof(buffer));

+
+ // We compare the content of .interp

section
+ // It will contains \0 when counting

read_size, so the size needs to
+ // decrease by one
+ llvm::StringRef loader_name(buffer,

read_size - 1);
+ llvm::StringRef

freebsd_kernel_loader_name("/red/herring");
+ if (loader_name.equals(

freebsd_kernel_loader_name))
+ return eStrataKernel;
+ }
+ }
+ return eStrataUser;
+ }

Listing 4. ELF kernel type modification

The final modification, outlined in Listing 4, pertains to
kernel format ELF files. In the ELF design, the kernel is con-
ceived as a conventional executable employing bare metal as
its runtime. Unlike formats such as Mach-O, ELF lacks a flag
indicating that an executable is a kernel. In the original LLDB,
this remained in the TODO list. However, our observation
reveals that the FreeBSD kernel employs a spurious file named
”/red/herring” in the interpreter section. This anomaly allows
us to conclusively identify ELF files associated with FreeBSD
kernels.
D. Integration to FreeBSD src

Until the time this paper is written, LLVM still doesn’t put
our patch into release. Thus the following modification I made
may not be the final result appear in the FreeBSD src. The
endeavors detailed in the preceding section have done within
the LLVM source. Given the distinct build systems employed
by FreeBSD (Makefile project) and LLVM (CMake project),
additional efforts were requisite to seamlessly integrate the
modifications into the FreeBSD project. The entirety of the
modifications is meticulously documented in reference [8].
One specific alteration that warrants emphasis is found in ”lib/-
clang/include/Plugins/Plugins.def.” Although the code remains
compilable without this modification, its absence precludes
its runtime discovery of this plugin within LLDB. Notably,
there is no explicit indication to amend this file, leading to a
substantial time investment in diagnosing and resolving this
issue.

IV. RESULT

To illustrate the efficacy of our modifications, we present
demonstrations in Listings 6 and 7.

In Listing 5, the original module list only parsed the
kernel itself. Subsequent to our modifications, as evident in
Listing 6, LLDB successfully recognizes the kernel module,
its associated symbol file, and the corresponding load address.
(lldb) image list
[0] 013C9080-98CC-F2F1-237C-AFAA727809F7-8144DCF4

0xffffffff80200000 /boot/kernel/kernel
/usr/lib/debug/boot/kernel/kernel.debug

Listing 5. Original module list

(lldb) image list
[0] 013C9080-98CC-F2F1-237C-AFAA727809F7-8144DCF4

0xffffffff80200000 /boot/kernel/kernel
/usr/lib/debug/boot/kernel/kernel.debug

[1] F67FE954-8379-A3D1-848C-946C8C239092-6EAD3444
0xffffffff81f50000 /boot/kernel/zfs.ko
/usr/lib/debug/boot/kernel/zfs.ko.debug

[2] C580C510-DF33-FB7D-81AC-7989646C889C-26A50D5F
0xffffffff82644000 /boot/kernel/cryptodev.ko
/usr/lib/debug/boot/kernel/cryptodev.ko.debug

[3] 34D8ADD5-836D-7AB7-F62E-0C35987F19D0-9659DE07
0xffffffff82b18000 /boot/kernel/intpm.ko
/usr/lib/debug/boot/kernel/intpm.ko.debug

[4] B90304EB-A9FE-5495-9B77-E92790CF6EAF-FC35AA21
0xffffffff82b1c000 /boot/kernel/smbus.ko
/usr/lib/debug/boot/kernel/smbus.ko.debug

...

Listing 6. Module list after modification

Furthermore, as portrayed in Listing 7, we present a
demonstration involving the extraction of symbol information
for the ”cryptodev mod,” corresponding to the symbol from
the ”cryptodev.ko” kernel module. The results showcase the
comprehensive recognition of the symbol and its underlying
structure by LLDB.
(lldb) p cryptodev_mod
(moduledata_t) $0 = {
name = 0xffffffff8264718f "cryptodev"
evhand = 0xffffffff82644000 (cryptodev.ko‘

cryptodev_modevent at cryptodev.c:1281)
priv = 0x0000000000000000

Listing 7. Demo of the symbol information

These demonstrations underscore the successful enhance-
ment of LLDB’s capabilities through our proposed modifica-
tions, enabling the precise identification and parsing of kernel
modules, symbol files, and associated load addresses.

V. CONCLUSION

The introduction of the LLDB kernel module debug facility
has successfully enabled LLDB to recognize the kernel loader
and load kernel modules recorded in coredumps through the
ProcessFreeBSDKernel plugin. This accomplishment repre-
sents a critical advancement in LLDB’s capabilities, partic-
ularly in the domain of post-mortem debugging within the
FreeBSD kernel.

Moreover, our contributions have transcended the concep-
tual realm and have been concretely integrated into the LLVM
source code. The successful merger of these modifications
awaits release, as well as integration into the FreeBSD source
code.

VI. FUTURE WORK

Several avenues for future research and development are
listed, involving further modifications to both LLVM source
code and the FreeBSD kernel:

1) Kernel executable hash section loading: Presently, the
verification of kernel matching with a given coredump
relies solely on the ELF header. To enhance this verifica-
tion, an additional step can be introduced by comparing
the .note.gnu.build-id section between the object file
and the kernel image. This section contains the hash

value of the file. However, our observations indicate
that the kernel may not load this section, resulting in
its absence in the coredump. Addressing this limitation
is imperative for an effective matching mechanism. The
concrete solution for this is to modify the bootloader to
load this section.

2) Hash value of kernel module: Extending the hash value
checking concept to kernel modules presents another
prospective avenue. This entails comparing the version
of a kernel module in the filesystem with the version
recorded in the coredump. By implementing such a
mechanism, a more comprehensive validation of kernel
modules can be achieved.

3) Live debug support: The current framework focuses on
post-mortem debugging, limiting its applicability to sce-
narios following a system crash. To broaden its utility,
support for live debugging can be incorporated. This
entails setting breakpoints when kldload and kldunload
are invoked. Upon triggering these breakpoints, the
”linker files” can be parsed anew, facilitating the loading
of newly added kernel modules during live debugging
sessions. This evolution would significantly enhance the
versatility and real-time applicability of the plugin.

REFERENCES

[1] ”ProcessFreeBSDKernel”, LLDB FreeBSD Kernel Debug-
ger. (Online) Available: https://www.moritz.systems/blog/
lldb-freebsd-live-kernel-debugging-support

[2] ”KGDB Manual”. (Online) Available: https://man.freebsd.org/cgi/man.
cgi?query=kgdb&sektion=1

[3] ”LLDB Manual”. (Online) Available: https://man.freebsd.org/cgi/man.
cgi?query=lldb&sektion=1

[4] ”KLD Manual”. (Online) Available: https://man.freebsd.org/cgi/man.
cgi?query=kld&sektion=4

[5] ”ld.ldd”. (Online) Available: https://man.freebsd.org/cgi/man.cgi?ld(1).
[6] ”libfbsdvmcore”. (Online) Available: https://github.com/

Moritz-Systems/libfbsdvmcore
[7] ”libkvm”. (Online) Available: https://man.freebsd.org/cgi/man.cgi?

query=kvm&sektion=3&manpath=FreeBSD+5.3-RELEASE
[8] Merge Process from LLVM to FreeBSD. (On-

line) Available: https://github.com/aokblast/freebsd-src/
commit/b4e8232961a038d8a4d29df442e4826de7e3da34#
diff-30f905803372e92aba2018edcd3a56a61c9e25653e7e1215cae7f84951391f6f

