
Rob Norris, Klara Inc.

Why fsync() on OpenZFS can’t fail,

and what happens when it does

Abstract

On OpenZFS, fsync() cannot fail - it will wait until the application’s changes are on disk before it returns. If there

is a problem, such as a hardware failure, that causes the pool to suspend, then it may wait forever. This feels

strange, but is acceptable according to the API contract: fsync() never returned success, so the application has no

reason to believe its data is on disk.

However, OpenZFS pools can recover if the fault is repaired, and so fsync() can still return. As it turns out

though, it’s possible in rare situations for the pool to return to service but not have actually put the data on disk.

fsync() returns success, because it cannot fail, and the application has been lied to.

This paper describes the path taken from the fsync() call, through the ZFS Intent Log, the transaction machinery,

the pool failure system and the IO pipeline to understand what happens to IO when disks fail, and why OpenZFS

believed that writes had succeeded when they had not. It goes on to describe changes to make OpenZFS

understand that something had gone wrong and respond appropriately, such that fsync() once again cannot fail.

1. Background

In early 2023 an organisation with a huge deployment of OpenZFS pools came to us with a problem. This

organisation runs a cloud storage service, where they receive files from customers and store them to an OpenZFS

dataset. To ensure that the files were stored safely, they would call fsync() at the end of each file write, and not

return a “success” message to their customer until fsync() completed successfully, guaranteeing that the file was

safely and reliably stored.

They were having problems with their SAS backplanes. At times, for no apparent reason, they would lose power,

appearing to the OS that multiple disks had failed at the same moment. When this occurred OpenZFS would

simply wait. After a short time, the backplane would return, and OpenZFS would continue. This was not ideal,

but was determined to be a fault in the backplane itself.

Sometimes, after this happened, an attempt to read a file would result in an IO error. Investigation found that the

fsync() call was in progress at the time the backplane failed, and after it returned and OpenZFS recovered, the

fsync() call had returned success, even though the file was clearly not correctly written to disk.

We were asked to investigate what was happening and make appropriate modifications to OpenZFS to ensure

that fsync() never returns success unless the file is really properly stored.

af://n843
af://n4996
af://n851

2. The OpenZFS write path

This section provides a brief overview of how filesystem modifications submitted by a user application make their

way through OpenZFS and out to disk. Readers familiar with OpenZFS internals will note that this is a rather

simplified view, but is all the context needed to understand the rest of this paper.

2.1. The DMU and the SPA

The Data Management Unit (DMU) is a component inside OpenZFS that provides the notion of “objects”:

arbitrarily-sized runs of data, named by a single 64-bit identifier. The facilities used by user programs to interact

with OpenZFS, like filesystems (files, directories), volumes and even whole datasets are all implemented as

different kinds of objects.

Under the DMU is the Storage Pool Allocator (SPA). This is the component of OpenZFS that manages the physical

devices and allocates “blocks” from them to be used for storage. Each DMU object is constructed from a tree of

blocks.

2.2. Transactions

The SPA and the DMU share the notion of a “transaction”. Modifications made to a DMU object (eg a file) are

accumulated in memory, and assigned to a transaction. After some time, the transaction is closed and starts being

written out to disk, and a new one is opened for the next round of changes to be assigned to. As such, a

transaction is the fundamental unit of storage atomicity in OpenZFS.

2.3. Transaction sync

After a transaction is closed, the DMU iterates over all the changes it has accumulated and submits them to the

SPA as writing IO requests. Because they all belong to the same transaction, they are submitted in a way that if it

one causes an IO error, they all fail with that error. This is important, as there are different subsystems all over

OpenZFS waiting for their return before moving on to something else, so it does no good to return success for a

specific change if the entire transaction failed.

2.4. Labels and uberblocks

Once the data writes are completed, the pool-wide “uberblocks” and the per-device “labels” are updated with

information about the new transaction. These are what OpenZFS looks for when importing a pool, so until they’re

fully written out, the transaction does not “exist”, as such.

af://n857
af://n859
af://n862
af://n864
af://n866

These are written in a special sequence. First the “even” label is written to each device and flushed, then the

uberblocks are written and flushed, then the “odd” label is written and flushed. This is done so that if power is

lost, at import OpenZFS can tell where in the sequence it failed, and understand which transaction is the “correct”

one.

2.5. Signal waiters

Once the transaction is fully written out, waiters all over OpenZFS are woken to inform them of this fact. There’s

many that might be waiting depending what’s going on at the time, not least the thread waiting to begin syncing

the next transaction out.

3. How OpenZFS implements fsync()

3.1. What is fsync()?

The fsync() system call has the prototype:

The common understanding is that when called on an open file, its successful return indicates that the file is

durably stored on disk. The expectation is that an unexpected system failure (eg power loss) at that moment

would not affect the file, and after the system is recovered the file contains all the data written up to the fsync()

call. It is often used as a building block for transactional IO.

3.2. The ZFS Intent Log

OpenZFS’ transactional model presents a challenge for implementing a system call like fsync(), which requested

that all changes for a single file be stored immediately. Changes accumulated in a transaction may touch multiple

files, and they may be dependent on each other. It’s not really possible to commit the changes for a single file

separately from the rest of the transaction. One could make fsync() forcibly commit the entire transaction, but

that can be very slow if the requested file was just one of thousands modified in the transaction.

OpenZFS handles this situation as many other storage systems do, by keeping a “journal” or “intent log” of the

logical changes that have been made on each file. This component inside OpenZFS is known as the ZFS Intent

Log, or ZIL.

Every modification made to a file is now stored in memory twice: once in the Data Management Unit (DMU) as a

normal part of the file state, and again in the ZIL as a record of the operations taken to get the file to that state.

For example, a typical file write sequence might look like:

int fsync(int fildes);

af://n869
af://n872
af://n873
af://n877

In the ZIL, this would generate a sequence of intent log entries. Simplified, they might look like:

Then, when fsync() is called on a file, the relevant portions of this list are immediately written to a special

“replay list” associated with each dataset. Only the entries for files specifically requested by fsync(), and any

that were modified as a result, are actually added to the replay list. In this case, fsync() on the file we created

would also add any modifications for the directory object to the replay list.

When the transaction completes and is written down to its final resting place, all in-memory intent log entries are

destroyed, and the on-disk replay list is deleted. This means there’s only minimal overhead if nothing uses

fsync() - the intent log entries are only ever in memory.

The last piece of the ZIL is the replay facility. When a dataset is mounted, the replay list is checked. Any

operations there are applied, so the filesystem state moves forward from whatever it was at the last completed

transaction to also have any changes that were explicitly fsync()'d during the last incomplete transaction.

3.3. Transaction sync fallback

If writing the ZIL replay list fails, the fsync() call simply falls back to waiting for the transaction to be

committed. This is the situation the ZIL exists to avoid, but it is the only remaining option that preserves

fsync()'s API guarantee. When the transaction is successfully committed, the changes are on disk, and fsync()

can return success.

4. How OpenZFS handles device failure

4.1. Device probes

OpenZFS takes a passive approach to detecting device failure. In the general case, it will assume that a device

exists and is in good health until and unless an IO request sent to it returns a error.

Most errors will result in a “probe” sequence being sent to the device. First, an attempt is made to read from the

labels stored on that device, which are always in a known location. If the read succeeds, an attempt to write a new

label is made. The outcome of these tests are saved, and will decide how the device is used in the future; for

example, if a device can’t be written to, then no further attempts will be made to store new data to it.

Once the probe sequence has completed, the original IO request is reprocessed. If the probe failed, the IO request

will be forced to have a “no such device” error (ENXIO) and returned to the caller. Often, an interior vdev (eg a

raidz control vdev) can compensate for this, reassigning the IO to a different physical device and retrying it. This

is how pool redundancy options typically work.

int fd = open("somefile", O_CREAT | O_WRONLY);

write(fd, "somedata", 8);

write(fd, "moredata", 8);

close(fd);

TX_CREATE <dirobj> <fileobj> "somefile"

TX_WRITE <fileobj> 0 8 "somedata"

TX_WRITE <fileobj> 8 16 "moredata"

af://n888
af://n891
af://n892

If the probe succeeded, then the IO request will be retried. If it still fails, then there is clearly something very

strange going on, and the pool is suspended. The original IO and any others in flight are held in a suspend list.

This has the effect that all user operations block. Once an operator has corrected the fault and run zpool clear,

failed devices are re-probed and if everything looks good, the suspended IO is reissued.

This describes the most common failure process. OpenZFS has many different kinds of IO and many possible

ways to set up a pool, so there’s many other things that it tries to correct for, and many special cases. There are

two place in particular where something different happens that are relevant to our secnario.

4.2. ZIL write failure

ZIL writes are issued with a special IO request flag, ZIO_FLAG_CANFAIL. If this type of request fails, the device is

still probed and removed from service if the probe fails, but the original request will not be retried, instead just

returning the original error. The ZIL does this because a failed retry can suspend the pool, which is a rather

heavy-handed response when the ZIL has a fallback available - simply waiting for the transaction to complete. If

the failure is transient, then the transaction will complete normally and the data will be safely on disk, allowing

fsync() to return success.

4.3. Flush failure

Much like filesystems, hard drives typically have their own internal caches that they use to improve performance.

As such, a successful response to a disk write IO may not mean that the data has been physically written to the

disk yet, and if power to the device is lost, so too may the data be.

To help with this, hard drives offer a “flush” operation that forces cached data to be written out, not unlike what

fsync() is to filesystems. As with filesystems, there are several flushing operations available. OpenZFS makes

use of a “write barrier” flushing operation, which is sent independent of other IO types. Its purpose is to

completely write everything in the drive cache to the physical disk. OpenZFS issues device flushes to all devices

in the pool after uberblock, label and ZIL writes complete successfully.

However, and somewhat surprisingly, OpenZFS ignores the response to flush requests, and has done so since ZFS

was first integrated into Solaris. 1 The reasons for this are unclear, but this author’s guess is that initially hard

drives generally did not have cache memories or flushing operations, and even once they became widespread an

uncaught flush error was extremely unlikely to not be accompanied by related write error or some other

significant hardware fault, so any problem that has been seen was likely discounted as a freak occurrence.

5. How fsync() fails

5.1. Guaranteed success

In OpenZFS, fsync() only ever returns 0, indicating success.

Internally, fsync() is implemented by zil_commit(), which presents an API contract that guarantees success:

void zil_commit(zilog_t *zilog, uint64_t oid);

af://n898
af://n900
af://n4045
af://n906

To make this guarantee, it relies on the fact that if something goes wrong in its own IO, it can fall back to waiting

for the whole transaction to be committed:

Given these API contracts, fsync() could not be any other way.

This guarantee is a reflection of OpenZFS’ fundamental goal of never losing data. The systems described in the

previous sections all work together to ensure that OpenZFS is always aware of where in the pipeline data is, and

it is fundamentally designed to stop the world by suspending the pool if it cannot find a way to make progress.

By design, there is no path through the system whereby a write operation could fail without the entire system

failing, so it is sufficient to assume that forward progress means everything is in good shape.

Unfortunately, because flush errors are not checked, this only holds if writes are guaranteed to succeed. Ironically,

the very presence of a flush operation makes it clear that this guarantee cannot possibly be true in all cases.

5.2. Flushed away

This problem was first presented to us with a failed backplane, but it can also apply to failures in disks, cables,

disk units or power supplies. If the connection is lost to the disk, the OS notices and takes the disk offline, and any

further IO receives an immediate error. If the error is in response to a write request, OpenZFS notices and

responds as described above. If the failure occurs between write and flush however, OpenZFS won’t notice and

will proceed, believing all is well.

When the ZIL write succeeds, fsync() returns success. If the connection to the disk fails just after the write and

the flush fails, OpenZFS doesn’t know, but even if it did, it would be too late - the user program has already

moved on. This is often survivable - if the pool is still able to operate without the failed disk, the transaction can

still be written out correctly, and the “lost” ZIL write is not needed.

If, on the other hand, the pool does not have sufficient redundancy (eg the whole backplane failing), the tree of

writes for the entire transaction will fail shortly after. This happens during the label/uberblock flush sequence, so

the pool will suspend and the failed IOs will be held. Usually, if the failure can be corrected, the pool will resume,

replay the lost IO, and the data will end up being written out correctly.

What often happens in this situation is that an operator will take some service continuity action, like begin a

service failover to another machine, and then power-cycle the system. After correcting the fault, the pool is

imported, and recovery actions run. The ZIL replay log will be scanned, but since the flush failed, some or all of

the log can be missing. The write that OpenZFS promised made it to disk (via its successful fsync() return) is

permanently lost.

void txg_wait_synced(struct dsl_pool *dp, uint64_t txg);

af://n915

6. Constructing a test case

6.1. Writing some files

As we investigated the problem we built a test case to demonstrate it. The organisation that first saw the problem

already had a program that simulated their workload, which we adapted to help us understand the problem.

The program creates thousands of directories, and then creates 100 threads that run a tight loop, creating a new

file in a random directory, writing a block of random data of length 4K-1.5M, renaming it into place, then calling

fsync() to force it to disk, closing it, and moving on to the next. Multiple directories are used to avoid threads

contending on directory updates.

Each step in the sequence is named:

open: create the file

stat: get its inode number, that is, OpenZFS object id

header: write the header, a text representation of the number of bytes we’re about to write

write: write the actual data, some amount of random data

footer: write a fixed text footer

rename: rename the file to its final name

sync: call fsync()

done: close the file, success!

For every file, we log its result, either success:

or if it fails, details about how far into that sequence it got:

This allows us to understand what operations the program took, and the result, which we can then compare with

what we see on disk and understand if OpenZFS did the right thing.

6.2. Power off

We let this program run for a couple of minutes, and then simulate a total pool failure by instructing the SAS

backplane to power off a number of disks. These tests are run on 14-wide RAIDz3 pools; to ensure failure we

power off five disks. The pool promptly suspends:

[pool-655033360322456518] 01:04:31.143215 SUCCESS: path=/pool-655033360322456518/dir-

14/13.tmp; ino=16386; size=447584

[pool-655033360322456518] 06:31:15.392190 FAILED: path=/pool-655033360322456518/dir-

10074/58073.tmp.new; ino=0; size=812014; step=open; err=5

 pool: pool-655033360322456518

 state: SUSPENDED

status: One or more devices are faulted in response to IO failures.

action: Make sure the affected devices are connected, then run 'zpool clear'.

 see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-HC

config:

af://n921
af://n922
af://n948

At this point, OpenZFS is holding all the failed IO, waiting for the pool to return. If we powered the disks on right

now, it would almost certainly recover. To ensure that everything is lost and we’re left with only what’s already

on the disks, so we instruct the BMC to hard power off the machine.

6.3. Log analysis

Once the machine returns, we power back on the disks and import the pool. Then we run a program that loads

and parses the result log, and then reads every file on the pool to see if it matches what we think we wrote. The

output looks something like:

According to the result log, all of these were ones that completed their entire sequence and fsync() returned

success for, eg:

Because this problem is sensitive to timing, it’s possible to complete a test run and for everything to be fine. In our

experience that was rare. To be sure, when we felt we had a good fix, we‘d do multiple runs to confirm it.

 NAME STATE READ WRITE CKSUM

 pool-655033360322456518 ONLINE 0 0 0

 raidz3-0 ONLINE 0 2 0

 wwn-0x5000cca26438c380 ONLINE 3 4 0

 wwn-0x5000cca2647dd640 ONLINE 3 4 0

 wwn-0x5000cca264800930 ONLINE 3 7 0

 wwn-0x5000cca2648defa8 ONLINE 3 5 0

 wwn-0x5000cca2648ee8d8 ONLINE 3 11 0

 wwn-0x5000cca2649004cc ONLINE 0 0 0

 wwn-0x5000cca2649042e8 ONLINE 0 0 0

 wwn-0x5000cca26490a5fc ONLINE 0 0 0

 wwn-0x5000cca2649116c0 ONLINE 0 0 0

 wwn-0x5000cca26491175c ONLINE 0 0 0

 wwn-0x5000cca26491428c ONLINE 0 0 0

 wwn-0x5000cca2649147c4 ONLINE 0 0 0

 wwn-0x5000cca2649173e4 ONLINE 0 0 0

 wwn-0x5000cca26491b4b4 ONLINE 0 0 0

 100 BROKEN: reported success, but found problem: file not on disk

 46185 OK: wrote correctly, found on disk as expected

BROKEN FILES (damaged on disk, but logged success):

 ts=06:46:01.612511 ino=64527 path=/pool-12255040345250044327/dir-14189/46188.tmp

problem=file not on disk

 ts=06:46:01.612549 ino=63881 path=/pool-12255040345250044327/dir-14187/46186.tmp

problem=file not on disk

 ts=06:46:01.612593 ino=64144 path=/pool-12255040345250044327/dir-14213/46212.tmp

problem=file not on disk

...

[pool-12255040345250044327] 06:46:01.612511 SUCCESS: path=/pool-12255040345250044327dir-

14189/46188.tmp; ino=64527; size=465053

af://n952

7. Handling ZIL flush failures

7.1. Propagate flush

The flushing function zio_flush() is very simple:

The flag combination is about the most aggressive way to issue IO and not care what happens:

DONT_RETRY: if this operation fails, don’t bother trying again

CANFAIL: if this operation fails, don’t suspend the pool

DONT_PROPAGATE: if this operation fails, don’t tell me about it

DONT_RETRY and CANFAIL are probably reasonable; the success or failure of a flush is a crucial piece of information

we need to manage the pool state. The IO layer shouldn’t blindly retry on error and assume all is well if the retry

succeeds, but neither should it just blindly suspend the entire pool since the meaning of the error will depend on

the context the request was issued in.

DONT_PROPAGATE however is obvious not reasonable. A flush failure means something, and we have to tell

someone!

Our first attempt to fix this was to simply propagate flush errors into the ZIL. The ZIL code is already structured

to support this; writes and flush IOs are already properly chained together such that a flush failure would cause

the write to fail, and there are comments explaining how it would work, if only flush errors were propagated:

and:

void

zio_flush(zio_t *zio, vdev_t *vd)

{

 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,

 NULL, NULL,

 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));

}

 /*

 * We expect any ZIO errors from child ZIOs to have been

 * propagated "up" to this specific LWB's root ZIO, in

 * order for this error handling to work correctly. This

 * includes ZIO errors from either this LWB's write or

 * flush, as well as any errors from other dependent LWBs

 * (e.g. a root LWB ZIO that might be a child of this LWB).

 *

 * With that said, it's important to note that LWB flush

 * errors are not propagated up to the LWB root ZIO.

 * This is incorrect behavior, and results in VDEV flush

 * errors not being handled correctly here. See the

 * comment above the call to "zio_flush" for details.

 */

af://n959
af://n960

So, we adjusted zio_flush() to allow the caller to request propagation:

This actually worked! When we ran our test case, while sometimes damage was found on the pool, we never saw

a case where fsync() incorrectly returned success.

However, this turned out to be not as complete a fix as we hoped.

7.2. Too much flushing

Most IO requests in OpenZFS are issued to a top-level vdev (eg a raidz or mirror) and lets that vdev decide how

to distribute that to its children. zio_flush() looks like that from the outside, but the function under it,

zio_ioctl(), doesn’t actually work that way.

 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);

 if (vd != NULL) {

 /*

 * The "ZIO_FLAG_DONT_PROPAGATE" is currently

 * always used within "zio_flush". This means,

 * any errors when flushing the vdev(s), will

 * (unfortunately) not be handled correctly,

 * since these "zio_flush" errors will not be

 * propagated up to "zil_lwb_flush_vdevs_done".

 */

 zio_flush(lwb->lwb_root_zio, vd);

 }

void

zio_flush(zio_t *zio, vdev_t *vd, boolean_t propagate)

{

 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,

 NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY |

 (propagate ? ZIO_FLAG_PROPAGATE : 0)));

}

zio_t *

zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,

 zio_done_func_t *done, void *private, enum zio_flag flags)

{

 zio_t *zio;

 int c;

 if (vd->vdev_children == 0) {

 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,

 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,

 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);

 zio->io_cmd = cmd;

 } else {

 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);

 for (c = 0; c < vd->vdev_children; c++)

 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,

 done, private, flags));

af://n981

Instead, it walks the vdev tree building a matching tree of IO requests, and true physical IO requests are only

issued to leaf, that is, “real” devices. So in our case, all 12 drives in the pool receive a flush.

At minimum, this is wasteful, as we’re sending flushes to disks that we never wrote anything to, and waiting for

them to respond. The real problem however is that the entire top-level operation succeeds if all leaf operations

succeed, but fails if any leaf operations fail.

If we’ve lost enough disks to suspend the entire pool, this doesn’t matter - several disks really will fail their flush

operation, and the pool will rightly suspend. However in the case of a regular degraded pool, where only a single

disk is lost, that disk will also return failure to its flush operation, and again, the entire top-level flush operation

fails.

For our ZIL flushes, that will also fail the ZIL write, which will cause the ZIL to fallback to waiting for the

transaction to be written out, and fsync() to return success. This destroys performance - now every call to

fsync() has to wait, as though the ZIL didn’t exist at all.

In addition to recording file results, the test program also records the average time spent in each stage. Normally,

with the pool in good health, it would show an average fsync() time of ~120ms.

With a single failed disk, and the change to enable flush propagation above, fsync() blows out:

7.3. An unknown amount of flushing

We spent a long time experimenting with different ways of trying to work around this, with limited success,

before finally understanding the problem and fixing it properly.

The original problem was that we just received a successful response to a ZIL write, but we don’t know if it’s truly

on disk:

The pool might be in perfect shape, and the write happened normally.

The write may have failed initially, and OpenZFS probed a disk, found it failed, changed its state to

“degraded” and then retried the write to different disks, which succeeded.

 }

 return (zio);

}

TIME OPEN WRITE SYNC

 10 0.246 0.961 120.000

 20 0.251 0.711 119.000

 30 0.246 0.704 116.000

 40 0.248 0.668 116.000

 50 0.252 0.707 123.000

 60 0.246 0.685 122.000

 70 0.195 0.639 333.000

 80 0.187 0.604 251.000

 90 0.174 0.621 241.000

 100 0.180 0.614 237.000

 110 0.183 0.592 245.000

 120 0.182 0.620 247.000

af://n992

The pool may be critically damaged, as in our original backplane failure, but the write has still succeeded.

An operator may have removed a disk in a raidz vdev, and the write successfully happened to other disks in

good health.

What we really need to do is issue a flush for this IO, that is, we need to tell all the disks that were written to that

they need to do a flush. At the same time, we must avoid any disks that we didn’t write to, as we don’t know

what they’ll do. This means we need to somehow bind flushes to writes, so we only flush what was written, and

no more.

The problem is that at this layer within OpenZFS, all we have is the completed IO object. We don’t know how it

was serviced, by design - the entire point of the SPA is that that it presents a uniform interface to all kinds of pool

topologies. We have no idea what happens under the hood.

An early attempt to resolve this problem was to add an IO flag to indicate that this IO should be flushed as it’s

written. This is analogous to the SCSI Force Unit Access (FUA) flag, which enables a write-through (no cache)

mode. This worked, in that the performance profile was not affected by a degraded device, but it still reduced

fsync() performance, for two reasons:

it forced a flush after every write, even when multiple writes for the same disk were on the IO tree

it subverted a feature of the ZIL, which is to delay flushing when there’s nothing actively waiting for a flushing

operation (for the case where a fsync() also required other objects to be flushed, even though there’s nothing

explicitly waiting for them)

In the end, we decided that there was no other way, and we would have to know exactly which disks we had

written to in order to be sure that our writes had completed.

7.4. Tracing IO

Since we had to hook something deeper into the IO layer to make this work, we tried to make something

reasonably generic, rather than tied specifically to flushing.

We introduced the notion of “vdev tracing”. When creating an IO request, a caller can add the

ZIO_FLAG_VDEV_TRACE flag to indicate that this IO should be traced.

A traced request is executed as normal: each stage of the IO pipeline may create child IO objects, and those create

child IO objects, all the way down the the real disks. As child IO objects complete, as well as propagating their

error code we now also propagate a list of any vdevs that returned a successful response while executing the IO.

There are no other behaviour changes. Thus, when the original request is completed, it will still have the same

overall success/fail response, and if it succeeds it will also have an attached list of all vdevs that were involved in

its success. This list can then be used to instruct those vdevs perform any follow-up operations, such as a flush.

By making our ZIL write request a traced request, so its completion handler can know where to issue a flush to.

7.5. The right amount of flushing

Armed with this new facility, we can write a new flushing function that only issues flushes to the vdevs involved

in servicing a “traced” IO:

void

zio_flush_traced(zio_t *pio, zio_t *tio, boolean_t propagate)

af://n1013
af://n1018

And then in the ZIL write completion handler, its just a case of trading zio_flush() for zio_flush_traced():

When we run the performance test again with a disk missing, we see the positive result:

A single disk is powered off ~70s. This does trigger some amount of ZIL write failures and flush failures, causing

some amount of fallback to transaction sync and thus a brief bump in the average sync time, but it quickly settles

back to the normal average once things settle and the surviving disks pick up normal service for the pool.

{

 const int cmd = DKIOCFLUSHWRITECACHE;

 const zio_flag_t flags =

 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY |

 (propagate ? 0 : ZIO_FLAG_DONT_PROPAGATE);

 spa_t *spa = pio->io_spa;

 zio_t *fio, *zio;

 zio_vdev_trace_t *zvt;

 vdev_t *vd;

 fio = zio_null(pio, spa, NULL, NULL, NULL, flags);

 for (zvt = avl_first(tio->io_vdev_trace_tree); zvt != NULL;

 zvt = AVL_NEXT(tio->io_vdev_trace_tree, zvt)) {

 vd = vdev_lookup_by_guid(spa->spa_root_vdev, zvt->zvt_guid);

 if (vd == NULL)

 continue;

 if (vd->vdev_children == 0) {

 zio = zio_create(fio, spa, 0, NULL, NULL, 0, 0, NULL,

 NULL, ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd,

 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);

 zio->io_cmd = cmd;

 zio_nowait(zio);

 }

 }

 zio_nowait(fio);

}

 zio_flush_traced(lwb->lwb_root_zio, zio, B_TRUE);

TIME OPEN WRITE SYNC

 10 0.278 0.938 121.000

 20 0.287 0.757 123.000

 30 0.284 0.695 124.000

 40 0.285 0.699 122.000

 50 0.293 0.702 134.000

 60 0.290 0.678 123.000

 70 0.287 0.656 178.000

 80 0.298 0.659 118.000

 90 0.299 0.747 124.000

 100 0.298 0.653 120.000

 110 0.291 0.692 122.000

 120 0.284 0.677 122.000

8. Status and further work

The two major changes described here – flush error propagation and vdev tracing – are in production at the

sponsoring organisation, and are working as planned.

The intent is to offer these changes to upstream OpenZFS during 2024. These changes were developed against

OpenZFS 2.1.5, so need to be forward-ported to the current development branch, and properly repeatable tests

developed.

More study is required to understand if it’s necessary to extend flush error propagation to the transaction commit

sequence of writing labels and uberblocks and if so, how to do so safely.

Acknowledgements

This work is complex, and its study and resolution involved multiple people over many months. Thanks to the

team at Klara Inc., past and and present, for their careful and thoughtful analysis and contributions. In particular,

thanks to Allan Jude, Mateusz Piotrowski, Richard Yao and Mariusz Zaborski.

This work was sponsored by Klara, Inc. and Wasabi Technology, Inc.

af://n1027
af://n4749

1. Ahrens et al., (2005), 5096886 Write caching disks need mechanism to flush cache to physical media, illumos/illumos-gate@fa9e4066 ↩

https://github.com/illumos/illumos-gate/commit/fa9e4066f08beec538e775443c5be79dd423fcab#diff-b40379551ccf26b24ddde1811e841f13c18b3715cc8739bc241acad156eb3913R725

	Why fsync() on OpenZFS can’t fail, and what happens when it does
	Abstract
	1. Background
	2. The OpenZFS write path
	2.1. The DMU and the SPA
	2.2. Transactions
	2.3. Transaction sync
	2.4. Labels and uberblocks
	2.5. Signal waiters

	3. How OpenZFS implements fsync()
	3.1. What is fsync()?
	3.2. The ZFS Intent Log
	3.3. Transaction sync fallback

	4. How OpenZFS handles device failure
	4.1. Device probes
	4.2. ZIL write failure
	4.3. Flush failure

	5. How fsync() fails
	5.1. Guaranteed success
	5.2. Flushed away

	6. Constructing a test case
	6.1. Writing some files
	6.2. Power off
	6.3. Log analysis

	7. Handling ZIL flush failures
	7.1. Propagate flush
	7.2. Too much flushing
	7.3. An unknown amount of flushing
	7.4. Tracing IO
	7.5. The right amount of flushing

	8. Status and further work
	Acknowledgements

