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Abstract—DTrace and eBPF are among the most powerful
observability tools available on general-purpose operating
systems today, with which users can ask arbitrary questions
and receive precise answers about any part of the system.
Their performance is unmatched by any traditional observ-
ability tools.

Unfortunately, their performance characteristics are not
well-researched. As a result, there are few available papers
discussing performance overhead of tracers one could refer-
ence for research or for production purposes.

In this paper, we review, design, implement, and conduct
a microbenchmark and an application benchmark to peak
into the performance overhead of DTrace and eBPF.

Our results provide a data point for future reference and
use in research and production environments. Additionally,
our results show not only similarities and differences but
also strengths and shortcomings of DTrace (on FreeBSD) and
eBPF (on Linux), two ecosystems catering to a the same niche
in observability.

Index Terms—DTrace, eBPF, Linux, FreeBSD, performance
engineering, benchmarking, observability

I. Introduction

Observability is the capacity to ask arbitrary ques-

tions and receive complex answers from any given

system [4, p. 1]. Traditional observability tools like iostat,
procstat, and top provide complex answers for specific

parts of the operating system (in case of the listed tools,

CPU, I/O, and processes respectively). Tools like DTrace

and eBPF allow us to ask arbitrary questions across

subsystem boundaries [16, pp. 235–236]. Even though

those tracing tools are often advertised as having almost

no overhead, their overhead is often non-negligible, which

limits the complexity of questions users can actually ask.

The overhead impacts the capacity of the tool to fulfill

its purpose [19, 13.3 How Much Overhead?].

II. Motivation

Traditional observability tools focus on obtaining spe-

cific information about the system. They offer only a

limited flexbility as they answer predetermined questions

about specific subsystems. Additionally, they have to

be in sync with new developments in subsystems and

applications to keep up with, e.g., the rising number of

metrics to collect. Essentially, the subsystem observation

is only possible if the subsystem comes with a dedicated

observability tool. Performance-wise, the tools were

deemed fast enough if they seemed so to the system

operator [6, p. 48].

The situation changed drastically with the emergence

of tracers, like DTrace [5] and eBPF [20], which offer

the flexibility and performance necessary to explore the

system in open-ended ways. As they address the needs

of modern observability [15], both their popularity and

deployment are on a rise.

Flexibility-wise, modern tracers allow for instrumenting

almost any piece of code. There are various caveats to that,

however. Instrumenting certain functions may jeopardize

the stability of the system. Some subsystems are more

tracing-friendly than others, which has more to do with

usability than flexibility. Ultimately, however, those are

edge cases. The anecdotal proof of the tracer’s flexibility

are tracer-based reimplementations of traditional observ-

ability tools (e.g., truss [8]).

In terms of performance, tracers have been praised

for their speed since they were introduced [10]. It is not

surprising. Tracer-based tools are generally as performant

as their traditional counterparts. In other words, as

long as a tracer replaces traditional tools, the user will

not notice performance hiccups. The moment we start

utilizing the tracer’s flexibility is when the overhead

increases causing performance to drop. The probe effect

is inevitable.

Unfortunately, the impact of the probe effect on the

popular workloads is not sufficiently researched. There

are very few publications discussing tracers’ overhead,

which users could refer to when designing production

systems.

This research aims to contribute to the collective

understanding of the user-facing tracing performance

overhead. We seek to provide data points that would

assist users in managing their expectations regarding

the actual capabilities of tracers. Publishing benchmark

results is critical because it expands the base of known
workloads, which others use for verification during their

benchmarking [9, Section 4.6].
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III. Benchmark Environemt

The benchmarks were executed on two identical amd64

servers (CPU: 32-core Intel Xeon Gold 6226R; RAM: 376

GiB) configured with FreeBSD 13.1-RELEASE-p1 and

Ubuntu 20.04.5 (Linux 5.4.0-139-generic). We followed

the recommendations from [3, p. 228] to reduce the

measurement noise.

IV. Benchmark 1: dd

In [7, Chapter 18], Brendan Gregg describes a bench-

mark measuring the eBPF performance overhead, which

uses the absolute per-event cost of a tracer action as

a metric. The description includes detailed benchmark

results. Those results provide an invaluable baseline for

further benchmarking of eBPF and other tracers. The high

quality of the benchmark description offered by the book

is the reason why we selected this benchmark as one of

two cornerstones of our research.

The following section will discuss Gregg’s benchmark

background, design, and implementation. We will explain

how we recreated the benchmark setup and ported

bpftrace scripts from Linux to FreeBSD DTrace.

A. Gregg’s Benchmark Background
Gregg’s benchmark focuses on illustrating the cost of

an action, which in this case is the handler installed

by the tracer at a probe. The workload was chosen to

make observing overhead easy by generating events at a

measurable frequency.

B. Gregg’s Benchmark Design and Implementation
The benchmark uses the standard POSIX dd utility,

which copies bytes from one file to another. The complete

invocation listed in the original publication is as follows:

1 dd if=/dev/zero of=/dev/null bs=1 count=10000k

Listing 1. Gregg’s Benchmark Workload

The command copies 10000000 1-byte blocks from

/dev/zero to /dev/null. Reads from /dev/zero do not

call any file-system functions, and the data does not

have to be generated (like in the case of random number

generators) or read from an existing file. The 1-byte-

block read/write operations make the dd invocation CPU-

intensive. As a bonus, 10000000 is an arbitrary number

that is sufficiently large to keep a modern CPU busy for

a few seconds.

The benchmark defines 18 bpftrace tracing scripts. Each

tracing script tests a different tracer feature, like the dy-

namic kernel instrumentation, the histogram aggregation,

or the kernel stack printing. Tested features are discussed

in detail in Section IV-D.

Every benchmark run starts with the tracing script.

When the tracer is done initializing and is ready to trace,

the dd workload is started. The time is measured from

the moment of the dd command execution until its return.

The workload is bound to a single CPU for consistency.

Perhaps surprisingly for such a simple design, this

benchmark checks out all the benchmark quality crite-

ria [13, Section 1.5]:

• Relevance. This benchmark is not only popular in

the performance engineering world. It also assesses

a wide range of properties by testing different tracer

features.

• Reproducibility. We will revisit this quality criterion

when comparing our results with Gregg’s.

• Fairness. [7] provides a fair amount of information

on the setup. There are no secrets to how the results

were obtained.

• Verifiability. Since the benchmark setup is simple,

anyone can rerun it to verify its results.

• Usability. Again, this benchmark is simple to use and

requires little configuration. Its setup is accessible

both economically and technologically, as it can be

executed even on dated consumer machines.

Gregg’s benchmark was executed on Linux 4.15 run-

ning on Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz

CPUs. The published result of each experiment is the

fastest of 10 runs [7].

C. Benchmark 1 Background
To reuse Gregg’s benchmark in our research, we had to

port the bpftrace script to DTrace. Porting was a relatively

easy task as the syntax of bpftrace resembles that of

DTrace.

D. Benchmark 1 Design and Implementation
We collected the results using a benchmarking tool

called Hyperfine [18]. The tracers were started in Hyper-

fine’s setup phase and stopped in Hyperfine’s cleanup

phase. DTrace scripts required extra flags and were started

like this:

1 dtrace -C -q -D DTRACE_SCRIPT="\"$script\"" -s "←↪
$script"

Listing 2. Setup Phase DTrace Launching Command

Flags -C and -D DTRACE_SCRIPT="\"$script\"" are

required by Listing 12 (and its function-return counter

part).

Let us discuss the process of porting bpftrace scripts to

DTrace. This section includes both bpftrace and DTrace

implementations of each tracing script. It discusses the

implementation differences and challenges we faced

during porting. Every pair has an associated test purpose

as described in [7]. Note that some test purposes refer

to features specific to Linux and bpftrace, which may

confuse in the context of FreeBSD (e.g., uprobes).

Most of the bpftrace one-liners use kprobes to tap into

the read function of the VFS subsystem. Those kprobes

are dynamic kernel probes with an unstable interface [7].

In the world of DTrace, the recommended interface for

tracing the VFS subsystem is the vfs provider, which



offers a stable interface to the most interesting parts of

the VFS subsystem [10, p. 335]. Using the unstable probes

of fbt provider instead of the vfs provider for DTrace

scripts may seem suboptimal but considering that the

primary goal of the scripts is to test the performance

of the tracing infrastructure, we decided to deprioritize

platform-specific optimizations and conventions.

Experiment 1 provides the baseline for our mea-

surements (Gregg describes the test purpose of this

experiment as “control”). The tracers here run in the

background and instrument only their special-purpose

BEGIN probes. The performance impact of the tracers on

the dd workload should be almost non-existent.

The second pair (Listing 3 and Listing 4) tests kprobes.

Porting this script to DTrace required that we establish

what is an equivalent of kprobes in FreeBSD. Since

kprobes are dynamic kernel instrumentation, the most

appropriate choice is to use the fbt provider on FreeBSD,

which serves the same purpose as kprobes. Another

obstacle was the lack of vfs_read() function on FreeBSD.

We decided that dofileread() is a good target function

on FreeBSD. Both vfs_read() and dofileread() are

functions called right after the read() system call enters

the kernel. 1 is a syntactically correct way to ensure

that the action body does nothing when a probe fires.

This way, only the probe instrumentation overhead is

measured. The probe handlers can return immediately

once a probe fires.

1 k:vfs_read {
2 1
3 }

Listing 3. 02.bt

1 fbt::dofileread:entry {
2 1
3 }

Listing 4. 02.d

The third pair of scripts (Listing 5 and Listing 6) is

dedicated to testing kretprobes (the dynamic instrumen-

tation of the kernel function return boundaries). The

implementation is similar to the second pair (Listing 3

and Listing 4).

1 kr:vfs_read {
2 1
3 }

Listing 5. 03.bt

1 fbt::dofileread:return {
2 1
3 }

Listing 6. 03.d

Pairs 4 (Listing 7 and Listing 8) and 5 (Listing 9 and

Listing 10) test the performance of tracepoints, the static

kernel instrumentation. On FreeBSD, the various DTrace

providers implement this type of interface. For example,

the read system call probe is available in the syscall

provider.

1 t:syscalls:sys_enter_read {
2 1
3 }

Listing 7. 04.bt

1 syscall:freebsd:read:entry {
2 1
3 }

Listing 8. 04.d

1 t:syscalls:sys_exit_read {
2 1
3 }

Listing 9. 05.bt

1 syscall:freebsd:read:return {
2 1
3 }

Listing 10. 05.d

Pairs 6 (Listing 11) and 7 (Listing 13) were the most

challenging to port over to DTrace. Their test purposes

are uprobes and uretprobes, respectively, which provide

the dynamic user-space instrumentation. Unfortunately,

DTrace on FreeBSD does not provide an equivalent of

Linux uprobes. The closest thing is the pid provider,

which provides only a subset of uprobe functionalities.

In particular, it does not support file-based tracing. As a

result, it is not possible to dynamically instrument the

user-space code of to-be-started processes on FreeBSD

with an elegant one-liner. The pid provider supports

tracing already existing processes (DTrace’s -p flag) and

processes started explicitly as a child process of DTrace

(the -c flag). See lines 37 through 40 of Listing 12 for an

example of how the pid provider can use the PID of an

existing process.

Unfortunately, this approach does not yield the behav-

ior we need. In our benchmarking setup, we would start

the tracing script and let it run in the background as we

queue up multiple consecutive runs of the dd workload.

This requirement prompted us to seek a way to port

the u:libc:__read(){ 1; } one-liner to DTrace in the

same spirit as other we did for other. The DTrace script’s

main requirement was to trace all the future dd workload

invocations. It means that the PID of the dd workload

is unknown if the script starts before the workload. We

found a workaround and implemented it in the DTrace

port.

The following paragraphs describe the implementation

of 06.d.
The script starts with a pragma that enables destructive

actions. Destructive actions must be enabled because we

need access to the two destructive functions. The first one,

system(), is needed to spawn a child DTrace script. The

other one, stop(), is required to stop the dd workload

process temporarily.



Lines 3 through 7 define some handy constants.

TARGET_PROCESS_ARGS is for the process arguments of

the dd workload. We use it to identify the dd workload

process. LIBC_PATH_PREFIX is the prefix of the location

of the libc in the file system. This prefix is needed to

identify when the dd workload process loads this shared

library.

Lines 9 through 34 implement the parent DTrace

script. That script is what is launched by the Hyperfine.

When a new dd workload program appears, it aims to

spawn a child DTrace script with the dynamic user-space

instrumentation (lines 36–47).

Our prototype of the parent DTrace script used the

proc provider to instrument the proc:::exec-success
probe that fires when a process successfully executes

a file. The action body of the proc:::exec-success
probe spawns the child process. Intuitively, the process

tracing should start as soon as the PID of the process

is known. The proc:::exec-success probe sounds like

the right moment to instrument the user-space bits

with the pid provider. Unfortunately, this approach

was wrong because the child DTrace script could not

attach to pid$target:libc*:_read:entry. The reason

was that the libc probes were not yet available. The freshly

spawned process had no time to load its shared libraries.

The parent DTrace process must spawn the child

DTrace process once libc is loaded to work around the

timing issue. In our implementation, we instrument

three probe points to detect that. The first probe is

syscall::open:entry (line 10), which we instrument in

such a way that we only execute the action if the pro-

cess arguments match TARGET_PROCESS_ARGS and if the

opening file is the library matching LIBC_PATH_PREFIX.
If those predicates hold, we capture the path of the

library in a thread-local self->path variable. Thanks

to using a thread-local variable, we no longer need to

perform expensive string comparisons to identify our

process of interest. It is enough to check if the variable

is set. The second probe is syscall::open:return (line

18). In this probe, we obtain the file descriptor of the

opened libc file. The third probe needs the file descriptor

because we cannot operate on file names (partially due

to the unavailability of the handy fds array in the

FreeBSD implementation of DTrace [10, p. 323]. The

third probe instruments the closing of the libc file via

syscall::close:entry. Under the assumption that the

libc is now loaded by the process and its functions are

available in the address space, the parent DTrace process

stops the dd workload process. The next step is spawning

the child DTrace script. The PID of the dd workload

process is passed via the -p flag, and READY_TO_ATTACH is

defined via the -D flag for the C preprocessor enabled via

the -C flag. The child DTrace script is now working, and

the parent DTrace script reset the thread-local variables

in preparation for another dd workload process.

Let us now turn our focus to the child DTrace script.

The tracing of the libc functions is done via the pid

provider probes. Most importantly, the child DTrace

script exits with the dd workload process. It does so by

instrumenting proc:::exit. This way, the child DTrace

script runs only as long as process it traces.

1 u:libc:__read {
2 1
3 }

Listing 11. 06.bt

1 #pragma D option destructive
2

3 #define TARGET_PROCESS_ARGS \
4 "dd if=/dev/zero of=/dev/null←↪

bs=1 count=10000000"
5

6 #define LIBC_PATH_PREFIX "/lib/libc.so"
7 #define LIBC_PATH_PREFIX_LEN (sizeof(←↪

LIBC_PATH_PREFIX) - 1)
8

9 #ifndef READY_TO_ATTACH
10 syscall::open:entry
11 /curpsinfo ->pr_psargs == TARGET_PROCESS_ARGS && \
12 arg0 != NULL && \
13 substr(copyinstr(arg0), 0, LIBC_PATH_PREFIX_LEN) ←↪

== LIBC_PATH_PREFIX/
14 {
15 self->path = copyinstr(arg0);
16 }
17

18 syscall::open:return
19 /self->path != ""/
20 {
21 self->fd[arg1] = 1;
22 }
23

24 syscall::close:entry
25 /self->fd[arg0] > 0 && self->path != ""/
26 {
27 stop();
28 system("dtrace -C -D READY_TO_ATTACH -p %d -s←↪

%s", \
29 pid, DTRACE_SCRIPT);
30

31 self->path = 0;
32 self->fd[arg0] = 0;
33 }
34 #endif
35

36 #ifdef READY_TO_ATTACH
37 pid$target:libc*:_read:entry
38 {
39 1;
40 }
41

42 proc:::exit
43 /pid == $target/
44 {
45 exit(0);
46 }
47 #endif

Listing 12. 06.d

Experiment 7 (07.bt and 07.d) test uretprobes. As a

result, their implementation is very similar to Listing 11

and Listing 12. Therefore, the listing of 07.d is omitted

from this section for brevity.

1 ur:libc:__read {
2 1
3 }

Listing 13. 07.bt

All the remaining experiments focus on the perfor-

mance of the tracer’s features.



The test purpose of experiment 8 is filter performance.

In the DTrace world, filters are called predicates.

The functionality selected for experiment 8 is filtering

out reads of 0 bytes. In contrast to Linux, where the read

size is stored in arg2, scripts on FreeBSD must obtain

that information from args[3]->uio_resid [10].

1 k:vfs_read /arg2 > 0/ {
2 1
3 }

Listing 14. 08.bt

1 fbt::dofileread:entry /args[3]->uio_resid > 0/ {
2 1
3 }

Listing 15. 08.d

Experiments 9 through 15 test various elements of

aggregations. Experiment 9 focuses on maps (called

aggregations in DTrace). Experiment 10 introduces a

single numerical key to the equation. Experiment 11

tests the performance of an aggregation where the key

is a string. At least in DTrace, strings are known to

be noticeably less performant than numerical types

like integers. Experiment 12 evaluates the performance

overhead of using maps with two keys. Experiment 13

counts how often identical kernel stack traces lead to

the execution of the vfs_read() function. Experiment 14

does the same, but for user stack traces. Experiment 15

tests the performance of the histogram aggregation. This

type of aggregation is more complex than the simple

count aggregation. The following listings present their

implementations.

1 k:vfs_read {
2 @ = count()
3 }

Listing 16. 09.bt

1 fbt::dofileread:entry {
2 @ = count()
3 }

Listing 17. 09.d

1 k:vfs_read {
2 @[pid] = count()
3 }

Listing 18. 10.bt

1 fbt::dofileread:entry {
2 @[pid] = count()
3 }

Listing 19. 10.d

1 k:vfs_read {
2 @[comm] = count()
3 }

Listing 20. 11.bt

1 fbt::dofileread:entry {
2 @[execname] = count()
3 }

Listing 21. 11.d

1 k:vfs_read {
2 @[pid, comm] = count()
3 }

Listing 22. 12.bt

1 fbt::dofileread:entry {
2 @[pid, execname] = count()
3 }

Listing 23. 12.d

1 k:vfs_read {
2 @[kstack] = count()
3 }

Listing 24. 13.bt

1 fbt::dofileread:entry {
2 @[stack()] = count()
3 }

Listing 25. 13.d

1 k:vfs_read {
2 @[ustack] = count()
3 }

Listing 26. 14.bt

1 fbt::dofileread:entry {
2 @[ustack()] = count()
3 }

Listing 27. 14.d

1 k:vfs_read {
2 @ = hist(arg2)
3 }

Listing 28. 15.bt

1 fbt::dofileread:entry {
2 @ = quantize(args[3]->uio_resid)
3 }

Listing 29. 15.d

Experiment 16 recreates one of the commonly used

idioms in the bpftrace/DTrace programmer’s toolkit. The

timing of a function execution is an example of how

tracers can answer complex questions about the system’s

performance. Tracers can precisely measure time between

events. In the case of experiment 16, the tracer can

calculate the time between two events.

1 k:vfs_read {
2 @s[tid] = nsecs
3 }
4

5 kr:vfs_read /@s[tid]/ {
6 @ = hist(nsecs - @s[tid]);
7 delete(@s[tid]);
8 }

Listing 30. 16.bt



1 fbt::dofileread:entry {
2 self->s = timestamp
3 }
4

5 fbt::dofileread:return /self->s/ {
6 @ = quantize(timestamp - self->s);
7 self->s = 0;
8 }

Listing 31. 16.d

The test purpose of experiment 17 is “multiple”. This

pair of scripts measures the combined performance

impact of using some computation-heavy elements of

the tracer’s language, such as histograms and stack traces

at the same time

1 k:vfs_read {
2 @[kstack, ustack] = hist(arg2)
3 }

Listing 32. 17.bt

1 fbt::dofileread:entry {
2 @[stack(), ustack()] = quantize(args[3]->←↪

uio_resid)
3 }

Listing 33. 17.d

Finally, experiment 18 looks into the performance

overhead of per-event printing. This one is another

commonly employed use case.

1 k:vfs_read {
2 printf("%d bytes\n", arg2)
3 }

Listing 34. 18.bt

1 fbt::dofileread:entry {
2 printf("%d bytes\n", args[3]->uio_resid);
3 }

Listing 35. 18.d

E. Benchmark 1 Results and Analysis
Table I and Table II contain our Benchmark 1 results.

Table III is a copy of Gregg’s results from [7]. The

published result of each experiment is the fastest of all

runs, to follow the principle of least perturbations [7].

Table IV contains the table of the per-event cost results

of both our and Gregg’s results.

Table V illustrates the relative slowdown.

Let us consider Table IV.

It is important to remember that we cannot tell which

system is faster than another. There are many factors

we did not take into consideration (e.g., compiler ver-

sion). Any performance comparison between DTrace and

bpftrace would be unfair and misinformed.

Our bpftrace results show that most experiments

show a lower per-event cost than Gregg’s results. We

expected that because tracing infrastructure is improving

fast and getting better and better with each release.

Additionally, we use bpftrace 0.17.0, which is most likely

more optimized than the older versions used by Gregg.

Gregg describes the cost of around 80 nanoseconds as

“fast” [7]. It is excellent that the kprobe experiment is still

under 80 nanoseconds. Also, none of the experiments

fell below that arbitrary threshold. The performance of

instrumenting tracepoint entries and returns is improving.

Another good sign is that the kprobes are still less costly

than kreprobes. Similarly, tracepoint entries are still more

expensive than tracepoint returns. Uprobes, famously

slow on Linux, perform better in our runs. Moreover,

uretprobes are still slower than uprobes, which is to be

expected.

The troubling results are those of experiment 14 (User

Stack). It needs to be clarified why reading the user stack

is so slow in the case of our bpftrace runs. Based on

the standard deviation of this experiment, we suspect

that something unusual is happening on the system.

The measurements of individual runs are always around

13 or 17 seconds and never in between. Experiment 17

(Multiple) is also most likely impacted by the slow user

stack functionality.

Experiment 18 (Per Event) is way slower than in

Gregg’s case. We suspect that this might be a telltale

of a misconfigured experiment case. The redirection

instructions in Greggs book for experiment 18 were not

clear to us.

The standard deviation of DTrace results is within

reasonable according to Hyperfine. The per-event cost

of DTrace runs is surprising. DTrace performed much

worse than bpftrace, but as we mentioned earlier, we

cannot draw any interesting conclusions from that alone.

There are promising bits in DTrace’s results, however.

The kernel instrumentation (dynamic and static) performs

very similarly for both entry and return probes. This result

contrasts with Linux readings. We suspect this results

from a different design of the in-kernel instrumentation.

Also, the static probes are more performant than the

dynamic ones (fbt), which was expected. By comparing

the experiments with and without actions in their clauses,

we can see that actions cause extra overhead in addition

to probes. Amazingly, experiments 6 (Uprobe) and 7

(Uretprobe), which used a nested DTrace invocation to

trace libc functions, are still more performant regarding

the absolute number of nanoseconds than uprobes on

Linux, which contrasts with other experiments. We

expected to see an enormous performance hit in the

case of experiments 6 and 7, as the traced program was

temporarily stopped to let the child DTrace script spawn

and attach to the traced process.

Table V shows the relative slowdown of experiments

relative to the baseline run. From this perspective, our

bpftrace runs exhibited a more considerable slowdown

than Gregg’s results. There might be a couple of reasons

for this. E.g., perhaps there are bottlenecks in the BPF

subsystem, which result in BPF not benefitting from faster

hardware.



Experiment Runtime (s) Per-Event Cost (ns)

01 Control 2.61958 0

02 Kprobe 3.17729 56

03 Kretprobe 4.61308 199

04 Tracepoint Entry 3.36088 74

05 Tracepoint Return 3.24673 63

06 Uprobe 13.46601 1085

07 Uretprobe 18.08874 1547

08 Filter 3.19123 57

09 Map 3.39113 77

10 Single Key 3.91503 130

11 String Key 4.22169 160

12 Two Keys 4.37811 176

13 Kernel Stack 5.83544 322

14 User Stack 13.38925 1077

15 Histogram 3.94975 133

16 Timing 7.35197 473

17 Multiple 15.25990 1264

18 Per Event 18.01106 1539

Table I

Benchmark 1 bpftrace Results

Experiment Runtime (s) Per-Event Cost (n)

01 Control 2.31770 0

02 Kprobe 5.12040 280

03 Kretprobe 5.16942 285

04 Tracepoint Entry 3.07915 76

05 Tracepoint Return 3.05219 73

06 Uprobe 10.85424 854

07 Uretprobe 16.48251 1416

08 Filter 5.47263 315

09 Map 5.58700 327

10 Single Key 5.88025 356

11 String Key 6.08666 377

12 Two Keys 6.32500 401

13 Kernel Stack 9.94135 762

14 User Stack 10.58532 827

15 Histogram 5.91704 360

16 Timing 9.13756 682

17 Multiple 15.44620 1313

18 Per Event 5.43515 312

Table II

Benchmark 1 DTrace Results

Experiment Runtime (s) Per-Event Cost (ns)

01 Control 5.97243 0

02 Kprobe 6.75364 78

03 Kretprobe 8.13894 217

04 Tracepoint Entry 6.95894 99

05 Tracepoint Return 6.92440 95

06 Uprobe 19.14660 1317

07 Uretprobe 25.74360 1977

08 Filter 7.24849 128

09 Map 7.91737 194

10 Single Key 8.09561 212

11 String Key 8.27808 231

12 Two Keys 8.31670 234

13 Kernel Stack 9.41422 344

14 User Stack 12.64800 668

15 Histogram 8.35566 238

16 Timing 12.48160 651

17 Multiple 14.53060 856

18 Per Event 14.67190 870

Table III

Benchmark 1 Gregg’s Results

V. Benchmark 2: FreeBSD Kernel Compilation

The second benchmark we selected was a FreeBSD

kernel compilation. Even though this may sound like

an unusual pick, it is one of the few recently published

DTrace benchmarks we could find. The benchmark is

Experiment Gregg’s bpftrace (ns) bpftrace (ns) DTrace (ns)

01 Control 0 0 0

02 Kprobe 78 56 280

03 Kretprobe 217 199 285

04 Tracepoint Entry 99 74 76

05 Tracepoint Return 95 63 73

06 Uprobe 1317 1085 854

07 Uretprobe 1977 1547 1416

08 Filter 128 57 315

09 Map 194 77 327

10 Single Key 212 130 356

11 String Key 231 160 377

12 Two Keys 234 176 401

13 Kernel Stack 344 322 762

14 User Stack 668 1077 827

15 Histogram 238 133 360

16 Timing 651 473 682

17 Multiple 856 1264 1313

18 Per Event 870 1539 312

Table IV

Comparison of Per-Event Costs

Experiment Gregg’s bpftrace bpftrace DTrace

01 Control 0% 0% 0%

02 Kprobe 13% 21% 121%

03 Kretprobe 36% 76% 123%

04 Tracepoint Entry 17% 28% 33%

05 Tracepoint Return 16% 24% 32%

06 Uprobe 221% 414% 368%

07 Uretprobe 331% 591% 611%

08 Filter 21% 22% 136%

09 Map 33% 29% 141%

10 Single Key 36% 49% 154%

11 String Key 39% 61% 163%

12 Two Keys 39% 67% 173%

13 Kernel Stack 58% 123% 329%

14 User Stack 112% 411% 357%

15 Histogram 40% 51% 155%

16 Timing 109% 181% 294%

17 Multiple 143% 483% 566%

18 Per Event 146% 588% 135%

Table V

Relative Slowdown

contained in the CADETS technical report [23] and

designed for measuring DTrace’s performance overhead

on FreeBSD.

The following sections describe the CADETS bench-

mark’s background, design, and implementation. Later,

we introduce our benchmark and explain how we recre-

ated and expanded the CADETS benchmark. Ultimately,

we present our results and compare them to those of

CADETS’.

A. CADETS Benchmark Background
The CADETS technical report [23] describes a DTrace-

based system providing provenance data for causal

backtracking and temporal pattern matching. What is

of great relevance to our research (and Benchmark 2 in

particular) is that the system’s implementation described

in the report uses DTrace as an always-on observability

mechanism to collect the necessary provenance data by

continuously tracing a large number of probes. This use

case naturally tests DTrace’s reliability, performance, and

ability to collect data from multiple sources simultane-

ously.



Regarding the workload, the FreeBSD kernel compi-

lation has a long history of being used as a benchmark

workload [24, 17, 21, 23, 12, 25].

It is not surprising:

• The kernel compilation is familiar. It is a frequently

performed operation in the development process

of an operating system. At the same time, it is a

common step during the system configuration step

among downstream consumers. As a result, the

kernel recompilation process and characteristics are

commonly understood by both the developers and

operators.

• The kernel compilation performance is relevant. The

reason is that it is rebuilt not only in development but

also later on during system integration. This trend

leads to the speed of kernel compilation performance

being the focal point of various projects (e.g., [2] is

a recent example in the Linux kernel community).

Also, the kernel compilation performance can be

the smoking gun evidence of a recent performance

regression [11].

• The kernel compilation puts various parts of the

operating system under test.

The kernel compilation tests the following system char-

acteristics [24]: effective CPU utilization, I/O perfor-

mance, and file system metadata performance. Its per-

formance is the wall clock execution duration of the

make buildkernel command.

The FreeBSD kernel compilation fulfills the following

benchmark quality criteria from [13, Section 1.5]:

• Relevance. The FreeBSD kernel compilation is a real-

world workload [14]. Additionally, it may act as

a macrobenchmark for system throughput evalua-

tion [24].

• Reproducibility. The FreeBSD kernel compilation

process is designed to produce the same results every

time. Additionally, the FreeBSD build process can

be configured to provide reproducible builds. This

guarantees that not only the process of building the

kernel is the same every time, but also the build

artifacts are always bit-for-bit identical.

• Fairness. Both the code and the documentation of

the build process are open-source. The FreeBSD

build process has no secrets that would disadvantage

anyone willing to execute this benchmark.

• Verifiability. The setup is simple and well-

documented, which improves verifiability.

Unfortunately, since the FreeBSD kernel compilation

is not designed to be a benchmark, it does not store

any extra statistics about its run that would help

verify the published results.

• Usability. The FreeBSD project supports building

the FreeBSD kernel on various architectures and

platforms. The kernel is expected to be buildable

even on low-end consumer-market machines like

older laptops. Additionally, FreeBSD can be built on

Linux and macOS.

B. CADETS Benchmark Design and Implementation
The authors measured the performance overhead of

the DTrace instrumentation by conducting a series of

measurements of the FreeBSD kernel compilation time

in four different tracing setup variants [23, pp. 40–42]:

• Auditing Script Variant is a kernel compilation with

a special auditing script. The script can be viewed

in one of the CADETS’ Git repositories [1].

• Baseline Variant has tracing turned off. This is

considered the baseline measurement to compare

other runs against.

• HyperTrace Variant traces the kernel compilation,

but the tracer runs on the host and traces the virtual

machine via a mechanism called HyperTrace [23, 22].

• Tracing-Enabled Variant traces the kernel compila-

tion. In this case, the tracer and the compilation

process run on the same machine, the most common

tracing setup described in this benchmark. The

machine is a virtual machine.

We are going to focus only on the baseline and tracing-

enabled variants. The other two are outside our research.

Unfortunately, the report does not explain many essen-

tial details of the system setup. The authors only mention

that they used a bhyve virtual machine with 4 CPUs and

16 GB RAM for the scenario involving the auditing script.

Additional information can be implied from the table

listing different tracing scripts [23, Figure 16 Varying

Levels of Granularity for Different Traces]. For example,

we suspect the file system used in the setup was UFS.

The workload of the benchmark consists of two el-

ements. There is the FreeBSD kernel compilation job

and the tracing script. The FreeBSD kernel compilation

job is not explained in detail. Based on the FreeBSD

documentation, we can assume that the command used

was make buildkernel. The FreeBSD version used for

building is not mentioned explicitly (the CADETS project

mentions using FreeBSD versions 11, 12, and 13 at

different stages of their research).

The only documentation of the tracing scripts is the

table listing various probes to which each script must

attach [23, Figure 16]. The probe definitions could be

more precise but are descriptive enough for us to recreate

those probe definitions in the D language. However, one

crucial bit is missing. Namely, we do not have the action

implementation. The report does not explain what action

was performed by the scripts when a probe matched. In

a private communication with a CADETS contributor,

we learned that the action was likely a simple operation.

In other words, it was neither an empty nor a complex

action that would be a significant source of overhead.

The effect of many attached probes is what was meant

to be benchmarked. Every tracing script is described in

terms of four DTrace providers: fbt, syscall, vfs, and



sched. The description mentions what probes a script is

attaching to for a given provider. For example, the “Trace

1” tracing script is described in the following way: fbt:

UFS; syscall: all; vfs: all; sched: none. Those descriptions

are generally easy to understand for users with some

DTrace experience. The “UFS” description for the fbt

provider requires slightly more knowledge of the FreeBSD

kernel internals. We assume that the authors meant a

DTrace probe description of fbt::ufs_* because most

of the UFS-related functions in the FreeBSD kernel start

with ufs_. This aligns with how other published UFS

tracing scripts [10, pp. 352–354].

According to the technical report [23, p. 41], the average

overhead across all the tested tracing scripts was 28%

as compared to the baseline measurements with tracing

disabled.

C. Benchmark 2 Background
We created a benchmark following the design and im-

plementation described in the CADETS technical report.

D. Benchmark 2 Design and Implementation
We had two machines available for the benchmark.

They are described in detail in Section III.

We decided to use the source code of FreeBSD

13.1-RELEASE associated with commit hash

fc952ac2212b121aa6eefc273f5960ec3e0a466d. This

version of FreeBSD was selected for various reasons.

First, this is the most recent release of FreeBSD,

containing all sorts of improvements for building

FreeBSD on Linux. Second, it was the version that

could be easily compiled on the Ubuntu version we

had configured. Lastly, FreeBSD 13 was the newest

major release at the time of writing, making it easier

for interested parties to reproduce our results on a

supported release.

The kernel compilation job was the make buildkernel
command executed in the FreeBSD source directory. In

order to remove the physical disk I/O perturbations

from the performance overhead equation, we decided

to use memory-backed disks. FreeBSD command provid-

ing this functionality is mdconfig. In the Linux world,

modprobe brd is a functional equivalent. The source

directory was extracted onto a 40 GB memory-backed

disk formatted with a traditional file system native to

the operating system. On FreeBSD, that file system was

UFS (via newfs). On Linux, it was XFS (via mkfs.xfs).
The rationale for selecting XFS instead of the vastly more

popular ext4 is given later in this section.

Regarding the tracing scripts, we recreated the DTrace

scripts based on the descriptions from the CADETS

report.

The following listings contain our interpretation of

the CADETS probe descriptions. The bpftrace probe

descriptions were developed by us to match the DTrace

probes descriptions functionality-wise as close as possible.

Let us start with the fbt provider (Listing 37, Listing 38,

Listing 39, Listing 40, Listing 41, Listing 42, Listing 43,

and Listing 44). The CADETS authors use the fbt provider

to instrument two categories of functions: the UFS file

system functions (either all or a small subset) and any

functions starting with a given letter. To port fbt provider

probes to Linux, we use kprobes, the dynamic kernel

instrumentation equivalent for Linux. Since our fbt probes

attach implicitly to both function entries and returns, we

must also instrument kretprobes. These functionalities

translate easily to bpftrace.

The real obstacle was translating UFS tracing. Even

though Linux offers some support for this file system, it

cannot be considered the equivalent of UFS on FreeBSD.

For that purpose, ext4 would be a much more appropriate

choice. Unfortunately, we could not use ext4 because the

server’s root partition was already using ext4. Using ext4

would result in more perturbations in measurements. The

instrumented probes would match file-system function

calls not only from the workload but also from the system

services. A remedy for that was choosing XFS as the file

system for the benchmarking setup.

Instrumenting open, close, and create function calls

of a file system is more complex in the case of XFS

(and of ext4 equally so) as it is in the case of UFS.

The equivalent of ufs_open() in the world of XFS is

not a single function, but two: xfs_file_open() and

xfs_dir_open(). The porting of ufs_close() is even

more problematic as Linux file systems usually do not

define close functions. The simple closing of a file is

handled without ever calling file-system-specific code

and is done by fput(). Only when the last reference

to a file is released the Linux kernel calls the release

function of the file system. The lack of a file-system-

specific function is unfortunate as fput() will also match

for non-XFS files, increasing the performance overhead.

Listing 36 showcases a potential workaround for that

problem. To keep the setup lean, we decided to let our

benchmark traces XFS close operations with kprobe:fput
without additional filtering.

1 #include <linux/fs.h>
2

3 kprobe:fput
4 /kaddr("xfs_file_operations") == ((struct file *)arg0)->←↪

f_op/
5 {
6 @[probe] = count();
7 }

Listing 36. Tracing Closing of XFS Files Only

1 fbt::ufs_*:

Listing 37. DTrace: fbt: UFS

1 kprobe:xfs_*,
2 kretprobe:xfs_*

Listing 38. bpftrace: fbt: UFS



1 fbt::ufs_open:,
2 fbt::ufs_close:,
3 fbt::ufs_create:

Listing 39. DTrace: fbt: UFS (open, close, create)

1 kprobe:xfs_dir_open ,
2 kretprobe:xfs_dir_open ,
3 kprobe:xfs_file_open ,
4 kretprobe:xfs_file_open ,
5 kprobe:fput,
6 kretprobe:fput,
7 kprobe:xfs_create ,
8 kretprobe:xfs_create

Listing 40. bpftrace: fbt: UFS (open, close, create)

1 fbt::ufs_*:,
2 fbt::a*:

Listing 41. DTrace: fbt: UFS, a*

1 kprobe:xfs_*,
2 kretprobe:xfs_*,
3 kprobe:a*,
4 kretprobe:a*

Listing 42. bpftrace: fbt: UFS, a*

1 fbt::ufs_*:,
2 fbt::a*:,
3 fbt::b*:,
4 fbt::v*:

Listing 43. DTrace: fbt: UFS, a*, b*, v*

1 kprobe:xfs_*,
2 kretprobe:xfs_*,
3 kprobe:a*,
4 kretprobe:a*,
5 kprobe:b*,
6 kretprobe:b*,
7 kprobe:v*,
8 kretprobe:v*

Listing 44. bpftrace: fbt: UFS, a*, b*, v*

Scheduler instrumentation naturally translates from the

DTrace sched provider static instrumentation to Linux

tracepoint:sched (Listing 45 and Listing 46).

1 sched:::

Listing 45. DTrace: sched: all

1 tracepoint:sched:*

Listing 46. bpftrace: sched: all

System call instrumentation relies on static kernel

instrumentation. As a result porting related probe de-

scriptions to Linux was as easy as in the case of scheduler

probes.

1 syscall:::

Listing 47. DTrace: syscall: all

1 tracepoint:syscalls:*

Listing 48. bpftrace: syscall: all

1 syscall:::entry

Listing 49. DTrace: syscall: all (entry)

1 tracepoint:syscalls:sys_enter_*

Listing 50. bpftrace: syscall: all (entry)

The translation of VFS probe description to Linux was

more challenging than expected. Even though VFS is one

of the essential subsystems of a modern general-purpose

kernel, the Linux kernel currently does not provide a

stable tracing interface to VFS functions. In contrast,

FreeBSD ships with a dedicated vfs provider. However,

on Linux, the VFS function must be instrumented with

kprobes. The last obstacle was selecting a function to trace

that would be the equivalent of FreeBSD’s vfs_close().
We decided to select __close_fd(), as fput() is already

instrumented by the XFS probes.

1 vfs:::

Listing 51. DTrace: vfs: all

1 kprobe:vfs_*,
2 kretprobe:vfs_*

Listing 52. bpftrace: vfs: all

1 vfs::vfs_write:,
2 vfs::vfs_read:,
3 vfs::vfs_open:,
4 vfs::vfs_close:

Listing 53. DTrace: vfs: write, read, open, close

1 kprobe:vfs_write ,
2 kretprobe:vfs_write ,
3 kprobe:vfs_read,
4 kretprobe:vfs_read,
5 kprobe:vfs_open,
6 kretprobe:vfs_open,
7 kprobe:__close_fd ,
8 kretprobe:__close_fd

Listing 54. bpftrace: vfs: write, read, open, close

Similarly to Benchmark 1, we used Hyperfine [18] to

conduct Benchmark 2. The benchmark executed Hyper-

fine once for each tracing script. The setup phase of Hy-

perfine downloaded the FreeBSD source tree, extracted it

onto the in-memory disk, and bootstrapped the necessary

tools by executing the kernel-toolchain target. The last

step of the setup phase was to launch the tracing script. In-

terestingly, the bpftrace scripts reached the safety limits of

the interpreter. To proceed with Benchmark 2, we had to

increase the system limit on the number of allowed open

file descriptors to 200000 and set environment variables

BPFTRACE_MAX_BPF_PROGS and BPFTRACE_MAX_PROBES to

22000. We configured Hyperfine to schedule at least one

warmup run to warm up the cache and give the tracer

more time to attach. The tracer startup takes up to a few

seconds, but based on our observations, the tracers were

attached and ready when the measured runs started.

With the setup finished, Hyperfine would start running



the kernel compilation jobs. The compilation jobs used

all 32 cores.

Before each new kernel compilation run, Hyper-

fine would clean the object directory and rerun the

kernel-toolchain target. This way every run started

with the same object directory.

The tracing script would terminate in the cleanup phase

of Hyperfine.

On FreeBSD, the compilation job used the LLVM

toolchain shipped with FreeBSD 13.1-RELEASE. On

Linux, LLVM 12 was selected out of necessity as we

experienced build failures when using other LLVM

versions.

E. Benchmark 2 Results and Analysis
Table VI contains the average kernel build time of our

and CADETS’ results. Table VII illustrates the relative

slowdown.

Naturally, our results are way ahead of the CADETS

results because we built the kernel with 32 CPUs instead

of 4. The FreeBSD kernel build parallelizes to 32 cores,

as we see over eight times faster build times.

We can make a couple of observations when comparing

the CADETS’ results with our DTrace results. Exper-

iments 1, 4, and 9 (vfs: all) are the most challenging

to FreeBSD. The performance of Linux does not suffer

as much as FreeBSD in those experiments. One of the

potential explanations is that the vfs matches many more

functions on FreeBSD than kprobes do on Linux.

In Table VII, the negative slowdowns of bpftrace are

visible. Of course, it is doubtful that the FreeBSD kernel

compilation speeds up when bpftrace traces over 1000

probes. We suspect that there is something in the archi-

tecture of bpftrace that causes results to show such a low

overhead. During the benchmark setup, we discovered

that at the end of all experiment 8 runs, bpftrace needed

10 minutes to terminate. DTrace, in comparison, needed

only a couple of seconds. If Benchmark 2 was modified

to require tracers to report collected statistics, we would

likely see completely different results.

fbt syscall vfs sched CADETS bpftrace DTrace

0 — — — — 460.00 43.28 32.92

1 UFS all all — 530.00 44.05 36.43

2 UFS-occ entry wroc — 460.00 43.32 33.38

3 UFS-occ all wroc — 470.00 43.46 33.58

4 UFS all all all 570.00 44.51 36.62

5 UFS-occ entry wroc all 480.00 43.41 33.54

6 UFS-occ all wroc all 500.00 43.52 33.69

7 UFS-a all — — 570.00 49.97 35.61

8 UFS-abv all — — 1210.00 62.14 160.36

9 — — all — 550.00 43.15 35.09

Table VI

Average Kernel Build Time (seconds)

VI. Conclusion

Our results show that DTrace and bpftrace are entirely

different pieces of software, even though they might look

similar.

fbt syscall vfs sched CADETS bpftrace DTrace

0 — — — — 0 % 0 % 0 %

1 UFS all all — 15 % 2 % 10 %

2 UFS-occ entry wroc — 0 % -1 % 1 %

3 UFS-occ all wroc — 2 % 0 % 2 %

4 UFS all all all 24 % 2 % 11 %

5 UFS-occ entry wroc all 4 % 0 % 2 %

6 UFS-occ all wroc all 9 % 1 % 2 %

7 UFS-a all — — 24 % 16 % 8 %

8 UFS-abv all — — 163 % 44 % 386 %

9 — — all — 20 % -1 % 7 %

Table VII

Relative Slowdown

Many engineers talk about the performance of ob-

servability tools but, unfortunately, rarely publish their

measurements. We believe that our performance over-

head benchmarking results will help users design better

systems and allow developers to have a more open

discussion about the performance overhead of tracers.

VII. Future Work

A. Stability of Tracers
In Section V, we focused on the runtime overhead of the

workload program caused by the enabled instrumentation.

What needed to be verified was whether tracers stayed

usable under load. For example, during initial experi-

mentation, we discovered that it took about 10 minutes

for bpftrace to print its collected statistics and quit. We

noticed that our scripts for the cleanup phase had to

wait way longer on Linux than on FreeBSD for the tracer

to quit. In comparison, when signaled, DTrace would

terminate in a few seconds. Measuring and understanding

this behavior might benefit the bpftrace community if

the problematic bottleneck gets identified.

B. Count the Number of Probes in Benchmark 2
Our design of Benchmark 2 did not consider that

the number of probe activations should be recorded.

As a result, we cannot calculate the per-event cost for

Benchmark 2. This was done to minimize the number

of perturbations. We did not want tracers to pollute the

results by writing their output to files. Instead, their

output was discarded.

Future iterations of Benchmark 2 should provide for

collecting those statistics.

C. Measuring DTrace and bpftrace with KUtrace
KUtrace is a new generation of observability tools. It

is designed to troubleshoot performance issues of highly

optimized and complex systems. It could be used to

measure the overheads of DTrace and bpftrace.
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