

Leveraging the Power of ChatGPT and Vector

Database in the FreeBSD Expert System

Yan-Hao Wang

National Chung Cheng University

Chiayi, Taiwan

bses30074@gmail.com

Abstract—Expert system is designed to emulate the expert,

solving complex problems. Modern expert system usually uses

machine learning to simulate the behavior of the domain experts.

In this paper, we use Retrieval-Augmented Generation with vector

database and ChatGPT to develop a FreeBSD Expert System.

Keywords—Expert system, Retrieval-Augmented Generation,

Large language models, Vector database

I. INTRODUCTION

Traditional expert system architecture is composed of two
parts

1. Knowledge base which stores all the relevant
information related to the domain of expertise.

2. Rule Engine: Contains some predefined rules by data
scientists. It processes the user's questions and applies
rules to generate accurate responses.

Modern expert systems often use the machine learning model as
the main component of it.

 Large language models (LLM) have shown the potential to
be the spindle of the expert system. One of the famous LLM
models is ChatGPT which is hosted by OpenAI. People can use
it without hosting by themselves which needs huge computility.

 However, ChatGPT has two limitations. First, ChatGPT uses
the data before September 2021, so they don’t get the newest
data. Second, ChatGPT is more like a general-purpose model, it
can answer different domain questions but it may tend to
hallucinate answers when asked about unfamiliar domains.

 There are three solutions to solve such issues.

1. Retrain a Model: Need the AI expert to train and costs a
lot to me.

2. Fine-tune the ChatGPT: Still a hard job for AI-
unfamiliar developer. And it also cost a lot.

3. Retrieval-Augmented Generation (RAG): Our solution.

In this paper, we use the third solution RAG, which is an
acceptable way no matter on cost and development aspect. So
we use the embedded model and vector database to achieve this.

II. DEVELOPMENT

A. Data Cleaning and Extraction

We extract data from the FreeBSD document [1] and
FreeBSD source code [2] with the find command and use the
"ps-pandoc" [3]. Basically, the FreeBSD document contains
html file and the source code contains *.[number] file which is
the man page source code. The process is shown in Fig 1.

Fig. 1. Data extraction process

Then we still use the find command to remove the unrelated
data, for example, the “Download PDF” texts in the FreeBSD
document as Fig 2 shows. Fig 3 shows the find command to
remove unrelated data.

Fig. 2. Unrelated text in FreeBSD document

Fig. 3. Find command to clean data

B. Embedded Model and Vector Database

An embedded model is a type of machine learning model
used to convert input data, such as words or sentences, into
numerical representations called embeddings or vectors. These
embeddings capture the semantic meaning or context of the
input data in a continuous vector space. When two vectors are
close, it means the corresponding sentences are very similar.
Embedded models are often employed in natural language
processing tasks such as text classification and sentiment
analysis.

A vector database is a collection of data stored as
mathematical representations. Vector databases make it easier
for machine learning models to remember previous inputs,
allowing machine learning to be used to power search,
recommendations, and text generation use cases.

OpenAI has embedded model API, there are multiple open
source embedded models online too. In this project, we use the
open-source model from Hugging Face. We choose the model
according to the MTEB Leaderboard [4] on Hugging Face. The
model can be changed arbitrarily.

We use the embedded model to process all the data from the
last step and store it in a vector database as Fig 4 shows. There
are also a lot of open-source databases, that can store the vector
from embedded models and have different search algorithms.
But in our case, we just use a file to store the vector and a simple
cosine similarity algorithm. Because our data is not big.

Fig. 4. Embedded model processes the sentence to vector

There are multiple facts (hyperparameters) we can tune here.
For example

• The length of sentences.

• What metadata should we leave.

• What model should we use.

• Weather we need to tune the embedded model.

 All these hyperparameters should be tried multiple times to
get the best answer. The answer will be different with different
fields.

 Fig 5 shows the query result of the question “What is gunion
in FreeBSD”. The query result is the sentences for the gunion
man page which is very reasonable.

 Fig 6 shows the ChatGPT answer without and with related
knowledge. The top is the answer without additional information
and it doesn’t even know what is gunion because the data it
learns is too old. The below obviously answers much better.

C. Integration with ChatGPT

Now our architecture is like what Fig 7 shows.

1. User sends a question to the embedded model

2. Embedded model generates question vector database

3. Vector database returns the origin question and related
knowledge. There is another hyperparameter we can
tune here is the return sentence number.

4. ChatGPT answers the question and returns it to the user.

Fig. 5. The graph of the query by embedded model and vector database

Fig. 6. ChatGPT answer without related knowledge and with related

knowledge

And we need to combine them all together with ChatGPT.

There are two ways to achieve this.

1. Easy just implement with ChatGPT API.

2. Develop ChatGPT plugin [5], plugin can let us set some

API and while asking questions ChatGPT, it will call

the API and get a response. This is the best practice for

of project. However, we need to consider the cost of

hosting the embedded model and vector database.

Fig. 7. Architecture of the project

 We have implemented the first case and decided not to keep
going with the second case because of the release of GPTs.

III. OPENAI GPTS AS POTENTIAL REPLACEMENTS

GPTs were launched in November 2023 [6]. It provides an
easy way to generate a custom GPT for any data you have.
Which becomes a potential replacement for our project. We only
need to upload the data from development step A and there is a
custom expert system.

On March 19, 2024, you will no longer be able to install new
plugins or create new conversations with existing plugins. Based
on this information, we decided to not keep going with the
project.

IV. SUMMARY

The significance of LLM is poised to exponentially increase
in the future, marking a pivotal shift in our technological
landscape. While we may not always complete the production
process in its entirety. But it is a good thing to focus on any
future trends and try to combine them with FreeBSD. No matter
on the FreeBSD document or the OS itself. All of the codes are
placed on my GitHub repository [7].References

[1] FreeBSD document, https://github.com/freebsd/freebsd-doc

[2] FreeBSD src, https://github.com/freebsd/freebsd-src

[3] Pandoc package, https://www.freshports.org/textproc/hs-pandoc/

[4] MTEB: Massive Text Embedding Benchmark (Muennighoff et al., EACL
2023)

[5] ChatGPT plugin document,
https://platform.openai.com/docs/plugins/introduction

[6] ChatGPT GPTs introduction, https://openai.com/blog/introd

[7] The repository of this paper, https://github.com/Wang-Yan-
Hao/freebsd_data

https://openai.com/blog/introd

